International meeting of the French society of neurology 2021

Revised guidelines of the French Headache Society for the diagnosis and management of migraine in adults. Part 1: Diagnosis and assessment

a Neurological hospital, Lyon, Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Lyon, France
b Neuro-Dol, Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Clermont-Ferrand, France
c Pain Department and FHU InovPain, CHU Nice - Côte Azur Université, Nice, France
d Department of Neurology, Laennec Hospital, CHU de Nantes, Nantes, France
e Centre d’évaluation et de traitement de la douleur, FHU INOVPAIN, hôpital de La Timone, Marseille, France
f Department of Neurology, Anney Genevois Hospital, Annecy, France
g Department of Neurology, Renou University Hospital, Rouen, France
h Centre d’Évaluation et de Traitement de la Douleur, Service de Neurochirurgie, Hôpital Salengro, CHU de Lille, Lille, France
i Emergency Headache Center (Centre d’Urgences Céphalées), Department of Neurology, Lariboisière Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France
j Department of Neurosurgery, Pitié-Salpêtrière Hospital, Paris, France
k Department of Neurology, Gui de Chauliac Hospital, CHU Montpellier, University of Montpellier, 34000 Montpellier, France

INFO ARTICLE

Received 8 July 2021
Accepted 9 July 2021
Available online xxx

ABSTRACT

The French Headache Society proposes updated French guidelines for the management of migraine. The first part of these recommendations is focused on the diagnosis and assessment of migraine. First, migraine needs to be precisely diagnosed according to the currently validated criteria of the International Classification of Headache Disorders, 3d version (ICHD-3). Migraine-related disability has to be assessed and we suggest to use the 6 questions of the headache impact test (HT-6). Then, it is important to check for risk factors and comorbidities increasing the risk to develop chronic migraine, especially frequency of headaches, acute medication overuse and presence of depression. We suggest to use a migraine calendar and the Hospital Anxiety and Depression scale (HAD). It is also necessary to evaluate the efficacy and tolerability of current migraine treatments and we suggest to systematically use the self-administered Migraine Treatment Optimization Questionnaire (M-TOQ) for acute migraine treatment. Finally, a treatment strategy and a follow-up plan have to be proposed. Guidelines for pharmacological and non-pharmacological treatments are presented in the second and third part of the recommendations.

© 2021 Published by Elsevier Masson SAS.

* Corresponding author.
E-mail address: genevieve.demarquay@chu-lyon.fr (G. Demarquay).
https://doi.org/10.1016/j.neurol.2021.07.001
0035-3787/© 2021 Published by Elsevier Masson SAS.

1. Introduction: Why should we be concerned by migraine?

Migraine is the second most common neurological disease after tension type headache, but many affected patients remain undiagnosed and undertreated. The prevalence of migraine is 14.4% with a peak between 35 and 39 years, 30% of women and 15% of men being affected in this age group [1]. In France, one in every five persons aged ≥ 18 years (21.3%) has migraine satisfying the diagnostic criteria of the International Classification of Headache Disorders, 3d version (ICHD-3) [2,3].

Migraine is a primary headache disorder that should no longer be considered as benign because it is the second cause of years lived with chronic disability after low back pain, and even the leading cause in individuals aged < 50 years [1]. Patients with migraine have a markedly reduced health-related quality of life as compared to healthy persons, both during and between attacks, because the disorder has negative impacts on patients’ work performance, household tasks, leisure time activity [4] and family relationships [5]. In addition, migraine leads to considerable costs, including direct costs of health care and treatments, and indirect costs of absenteeism and reduced work productivity. The burden of migraine culminates in patients with chronic migraine, formerly called “chronic daily headache” or “transformed migraine” [6]. Migraine is an independent vascular risk factor [7], and patients with migraine with aura have a two-fold increased risk of ischemic stroke [8]. Although its exact mechanisms are incompletely deciphered, migraine is a neurovascular condition due to the interplay of complex genetic factors with multiple environmental factors.

2. Methods

The French Headache Society has prepared, revised guidelines to provide healthcare professionals with practical and up to date recommendations to optimize diagnosis and treatment of migraine, with the aim of improving the quality of life of affected patients and their relatives. The first part presents guidelines about the diagnosis and assessment of migraine. The second and third parts respectively present guidelines about pharmacological and non-pharmacological treatments of migraine [9] [10].

2.1. Objectives

These recommendations were elaborated under the auspices of the French Headache Society (Société Française d’Étude des Migraines et Céphalées, SFEMC) and update the previous guidelines [11,12]. They summarize and evaluate available evidence with the aim of assisting all health care professionals supporting patients with migraine in selecting the best management strategies. These recommendations concern adult patients with migraine.

2.2. Guideline development

The development process consisted in five stages:

- literature review within each writing sub-groups (writing group members and invited experts), ii) draft update within each sub-groups;
- review of the whole draft by the writing group;
- review by the reading group;
- final editing by the writing group in the light of all comments.

Each sub-group was responsible for the literature review focusing on five key topics: “Diagnosis and assessment of migraine,” “Acute migraine treatment”, “Prophylactic treatment”, “Specific situations in women with migraine” and “Non-pharmacological approaches”. The literature review on “Diagnosis and assessment of migraine” and “Pharmacological treatment” was conducted since previous French guidelines, as several authors (ADo, CL, MLM) were involved in both works and as the same methodology was used. For topics that were not covered by the previous recommendations (e.g. neuromodulation, other non-pharmacological approaches), we searched for articles published since MEDLINE was launched in 1966.

We first graded the levels of evidence in three categories “High = We are confident that the true effect lies close to the estimate given by the evidence available”, “Moderate = We are moderately confident in the effect estimate, but there is a possibility it is substantially different”, “Low = Our confidence in the effect estimate is limited. The true effect may be substantially different”. Secondly, we provided the strength of recommendation grades for clinical implication [13]: “Strong = Benefits clearly outweigh risks and burdens for most patients = Can apply to most patients in most circumstances”, “Moderate = Benefits clearly outweigh risks and burdens for most patients = Can apply to most patients, but there is a chance the recommendation may change with more research”, “Weak = Benefits clearly outweigh risks and burdens for most patients = Can apply to most patients, but there is a good chance the recommendation could change with more research” or “Not recommended”. A reading committee scored the proposals by attributing a score ranging from 1 to 9 (best score). Any score below 5 had to be justified. All the proposals were finally deemed appropriate by the reading group (median ≥ 7). Relative (range: 5 to 9) or strong (range: 7 to 9) agreement of at least 90% of reading group members [14] was obtained for all recommendations.

2.3. Guideline panel composition

During the first stage, an expert writing group (CL, CR, ADo, ADu, GD, SDG, EGM, JM, XM MLM, PG, DV) and 14 invited experts were assembled to summarize the existing literature. Each sub-group was responsible for the literature review for its topic. A group of 24 interprofessional external reviewers and patients who were not involved in any aspects of the guideline development, was convened to conduct a final review of the guidelines. All active contributors to the review are named in the acknowledgments at the end of the article.

3. Diagnosis and assessment of migraine

The management of migraine aims to precisely diagnose migraine according to ICHD-3 criteria, check for risk factors for
3.1. Migraine without aura

Migraine without aura, the commonest type of migraine, is diagnosed when patients have had at least five attacks of migraine without aura and no aura [2]. Attacks typically comprise an incapacitating headache associated with light and sound hypersensitivity and/or digestive symptoms, lasting 4 to 72 h when untreated (Box 2). Osmophobia is not included in the ICHD-3 criteria, but is considered as a highly specific symptom of migraine [15].

Typical pain is located in the frontal, orbital, temporal and occipital regions [16]. Migraine pain frequently involves the neck and the face [17–20] and is commonly misdiagnosed as occipital neuralgia (Arnold’s neuralgia) or sinus headache respectively. Other non-painful symptoms comprise osmophobia, cutaneous allodynia, fatigue, yawning, concentration difficulties, mood changes, neck stiffness, pallor and dizziness [15]. In a subset of patients, pain is accompanied by cranial dysautonomic features such as conjunctival injection, lacrimation, nasal congestion, rhinorrhea, eyelid oedema, miosis and ptosis [21,22]. In the presence of dysautonomic symptoms, migraine attacks must carefully be distinguished from cluster headache attacks. All the non-painful symptoms, which can be very bothersome, may begin up to two days before the headache during the “prodromal phase” and may last following pain resolution during the so-called “postdrome phase” for up to two days. They might even persist in some patients between the migraine attacks.

Probable migraine without aura is diagnosed in patients with attacks fulfilling all but one criteria A-D for migraine without aura and not fulfilling ICHD-3 criteria for another headache disorder [2].

3.1.2. Migraine with aura

Migraine with aura is diagnosed when patients have had at least two attacks of migraine with aura, irrespective of the number of attacks of migraine without aura [2]. About one-third of patients with migraine have migraine with aura [23].

Box 2. ICHD-3 diagnostic criteria for migraine without aura [2].

A. At least five attacks fulfilling criteria B-D
B. Headache attacks lasting 4–72 h (untreated or unsuccessfully treated)
C. Headache has at least two of the following four characteristics:
 a. unilateral location
 b. pulsating quality
 c. moderate or severe pain intensity
 d. aggravation by or causing avoidance of routine physical activity (eg, walking or climbing stairs)
D. During headache at least one of the following:
 e. nausea and/or vomiting
 f. photophobia and phonophobia
E. Not better accounted for by another ICHD-3 diagnosis.

chronic migraine and comorbidities, assess migraine-related disability and severity, evaluate the efficacy and tolerability of current migraine treatments, and propose a treatment strategy and a follow-up plan (Box 1). The efficacy of the management is driven by the precision of the initial diagnosis, which relies on a careful and detailed initial assessment.

3.1. Diagnose migraine attacks according to ICHD-3 criteria

Patients can have attacks of migraine without aura and/or with aura. When patients have both types of attacks, both the diagnosis of migraine with and without aura must be given [2]. The pattern can change over the years.

Box 1. Relevant information to collect in a patient with migraine.

Headache history
- First consultation: diagnosis of the type of migraine
 - age at onset
 - location, type and intensity of pain
 - associated signs and symptoms before (prodromal phase), during, and between attacks
 - presence of aura symptoms and signs
 - duration of attacks
 - migraine triggers (true or supposed)
- Follow-up: check for the absence of a new type of headache
- Frequency of attacks (migraine calendar): number of monthly migraine days and headache days
- Risk factors for chronic migraine, comorbidities and emotional burden (HAD scale)
- Migraine impact and disability: HIT-6 scale, assess avoidance behavior against triggers
- Migraine medications
 - previous treatment: acute and preventative drugs used, efficacy, observance, tolerance, dose, duration of administration, reasons for stopping
 - current treatment (review the migraine calendar)
- acute treatment: efficacy, number of days with intake, tolerance, dose, timing and route of administration, respect of contraindications
- prophylactic medication: efficacy, observance, tolerance, dose, respect of contraindications
- non-drug treatment: type, efficacy

Medical history
- other cephalic or non-cephalic pain diseases
- other conditions and their medications
- women: desire of pregnancy, pregnancy, breastfeeding, contraception, menopause

Physical exam
- Blood pressure, heart-rate, weight and height (BMI), neurological exam
Box 3. ICHD-3 diagnostic criteria for migraine with aura [2].

A. At least two attacks fulfilling criteria B and C
B. One or more of the following fully reversible aura symptoms:
 a. visual
 b. sensory
 c. speech and/or language
 d. motor
 e. brainstem
 f. retinal
C. At least three of the following six characteristics:
 g. at least one aura symptom spreads gradually over ≥ 5 minutes
 h. two or more aura symptoms occur in succession
 i. each individual aura symptom lasts 5–60 minutes
 j. at least one aura symptom is unilateral
 k. at least one aura symptom is positive
 l. the aura is accompanied, or followed within 60 minutes, by headache
D. Not better accounted for by another ICHD-3 diagnosis.

Typical aura comprises visual (> 90%), sensitive (30%), and more rarely, speech/language symptoms (Box 3). Each individual symptom usually lasts less than one hour. On the contrary of transient ischemic attacks, which symptoms start suddenly and concomitantly, aura symptoms spread gradually over ≥ 5 min, and occur in succession. Visual symptoms affect both eyes and include positive (flashing lights, zig-zag lines), and/or negative (blind spots) disturbances. Sensitive symptoms often comprise unilateral negative (numbness), or positive (tingling, pins and needles) symptoms that start in the hand and gradually involve the arm and face. Uncommon auras include brainstem symptoms (dysarthria, vertigo, tinnitus), motor weakness (hemiplegic migraine), and strictly monocular visual symptoms (retinal migraine) [2]. In most cases, migraine aura is followed or accompanied by a headache that can have migraine features or not. In a minority of cases, aura occurs without any headache, thus it is possible to receive a diagnosis of migraine without having any headache.

3.1.3. Distinguish migraine from other headaches and facial pain

A careful history permits to distinguish migraine from other primary headaches, notably tension headache or cluster headache and from trigeminal neuralgia that is much less prevalent (Table 1). Key clinical features for a proper diagnosis

| Table 1 – Discriminating features of the main primary headaches and trigeminal neuralgia. |
|---|---|---|---|
| Migraine | Tension-type headache | Cluster headache | Trigeminal neuralgia |
| Attack duration | 4–72 h | Hours to days, or unremitting | 15–180 min | Seconds to two minutes |
| Unilaterality | Usually unilateral | Usually bilateral | Strictly unilateral | Strictly unilateral |
| Pain location | Usually frontotemporal, sometimes occipital or diffuse | Circumferential or bitemporal or occipital | Orbital and/or temporal | V2/V3 >> V1 |
| Type of pain | Usually pulsating | Usually pressing, tightening | Overwhelming | Electric shock, shooting, stabbing or sharp |
| Pain during routine physical activities (walking, climbing stairs) | Often aggravated by routine activities, Seeks calm | Not aggravated by routine physical activity | Not aggravated by routine activity | Aggravated by speaking, drinking, chewing |
| Pain Intensity | Moderate to severe | Mild to moderate | Severe to very severe | Severe to very severe |
| Digestive symptoms | Usually nausea and/or vomiting | Usually none | Rare nausea and/or vomiting | None |
| Sensorial symptoms | Usually phonophobia and photophobia | Often none; sometimes photophobia OR phonophobia (not both) | Possible phonophobia and photophobia | None |
| Dysautonomic features* | Possible | None | Prominent* | Rare |
| Other possible features | Cranial and cervical tenderness, cutaneous allodynia | Cranial and cervical tenderness | Cranial and cervical tenderness | Precipitated by innocuous stimuli within trigger zones that are predominantly reported in the perioral and nasal region. Contraction of facial muscles on affected side |

* Lacrimation, conjunctival injection, eyelid oedema, forehead and facial sweating, nasal fullness, rhinorrhea, ptosis, miosis.

Box 4. ICHD-3 diagnostic criteria for chronic migraine [2].

A. Headache (migraine or tension-type-like) on \(\geq 15 \) days/month for \(> 3 \) months, and fulfilling criteria B and C

B. Occurring in a patient who has had at least five attacks fulfilling criteria B–D for 1.1 Migraine without aura and/or criteria B and C for 1.2 Migraine with aura

C. On \(\geq 8 \) days/month for \(> 3 \) months, fulfilling any of the following:

1. criteria C and D for 1.1 Migraine without aura
2. criteria B and C for 1.2 Migraine with aura
3. believed by the patient to be migraine at onset and relieved by a triptan or ergot derivative

D. Not better accounted for by another ICHD-3 diagnosis.

are the duration of attacks without any treatment, the associated symptoms and the behavior during attacks.

3.2. Distinguish episodic and chronic migraine

Patients with < 15 headache days per month have episodic migraine. Chronic migraine is defined by 15 or more headache days per month, for more than three months, which, on at least eight days per month, meet ICHD-3 criteria for migraine with or without aura (Box 4). About 3% of persons with episodic migraine develop chronic migraine in a year [24], through a process called “transformation”, “chronification” or “progression” [5]. Chronic migraine has a major impact on physical, mental, and socioeconomic functioning, and is associated with a worse quality of live than episodic migraine [6].

3.3. Check for risk factors for chronic migraine and comorbidities

Comorbidities of migraine (i.e., disorders that are more prevalent in migraineurs than in controls) include anxiety, depression, sleep disorders, asthma and other respiratory conditions, chronic non-headache pain, cardiovascular disorders, and other less common disorders (Table 2). Any of these comorbidities is associated with an increased risk of progression from episodic to chronic migraine, and the risk is further increased when multiple comorbidities are present [25] (Supplementary material - Appendix 1).

The improvement of comorbidities may possibly improve the treatment outcomes for migraine and vice versa. Among the modifiable risk factors for migraine progression, the highest strength of evidence is demonstrated for headache frequency at baseline, depression, and medication overuse [5,25,26].

In order to improve the management of migraine, the frequency of headaches and use of acute medications must be monitored by a headache calendar, and the psychiatric comorbidities must be systematically evaluated by the Hospital Anxiety and Depression (HAD) scale. An increased score on the HAD scale may reveal the emotional burden of debilitating migraine attacks, or a definite psychiatric disorder, or a combination of both.

<table>
<thead>
<tr>
<th>Risk factors for transformation</th>
<th>Levels of evidence [5]</th>
<th>Potential preventive or curative intervention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sociodemographics</td>
<td>Female gender</td>
<td>Fair</td>
</tr>
<tr>
<td>Lifestyle factors</td>
<td>Low socioeconomic status of family</td>
<td>Fair</td>
</tr>
<tr>
<td>Habits</td>
<td>Caffeine intake</td>
<td>Fair</td>
</tr>
<tr>
<td>Major live events</td>
<td>Obesity</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td>Major life events including history of abuse</td>
<td>Fair</td>
</tr>
<tr>
<td>Headache features</td>
<td>Frequency of headache days</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Persistent/frequent nausea with migraine</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Cutaneous allodynia</td>
<td>Medium</td>
</tr>
<tr>
<td>Comorbidities</td>
<td>Depression</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Asthma and other respiratory conditions</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Non-cephalic pain (low back/neck pain, arthritis)</td>
<td>Medium</td>
</tr>
<tr>
<td>Head and neck injury</td>
<td>Head and neck injury</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td>Snoring</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Insomnia</td>
<td>Fair</td>
</tr>
<tr>
<td>Acute treatment</td>
<td>Hypertension, cardiovascular diseases</td>
<td>Unknown</td>
</tr>
<tr>
<td></td>
<td>Acute medication overuse</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Inadequate acute treatment</td>
<td>Medium</td>
</tr>
</tbody>
</table>

3.4. Screen for medication overuse and medication overuse headache

Medication overuse headache (MOH) is a headache occurring at least 15 days/month and developing as a consequence of regular overuse of acute headache medication for more than 3 months (Box 5). An overuse is defined as a regular use of simple analgesics (paracetamol, acetylsalicylic acid, NSAIDs) for at least 15 days a month, or a regular use of triptans, combination-analgesics, ergotamines, opioids, or any combination of the mentioned drug-classes for at least 10 days a month. Opiates and combined analgesics induce the highest risks for MOH (level of evidence high) [27]. Medication overuse often parallels high frequency of headache, and might be either a consequence, or a promoter of migraine chronification, or both [28]. Accordingly, chronic migraine can now be diagnosed whether or not medication overuse is present [2]. The role of medication overuse in patients with chronic migraine should not be overemphasized because it may lead to suffering, stigmatization of patients as responsible for their own disorder, and diversion from other efficient therapeutic interventions [29].

3.5. Assess headache-related disability

The disability relies on the frequency and intensity of headache and coping strategies of the patient and should be formally evaluated at each visit by the use of the headache impact test (HIT-6). Evidence showed that patients with 8 or more monthly headache days have a similar reduction of their quality of life as patients with chronic migraine [30]. Therefore, severe migraine should be diagnosed according to the recently proposed French criteria in any patient having 8 or more monthly migraine days and in any patient having a HIT-6 score of 60 or above and/or having markedly debilitating attacks [31] (Box 6) (Supplementary material - Appendix 2).

Box 5. ICHD-3 diagnostic criteria for medication overuse headache [2].

A. Headache occurring on \(\geq 15 \) days/month in a patient with a pre-existing headache disorder
B. Regular overuse for \(> 3 \) months of one or more drugs that can be taken for acute and/or symptomatic treatment of headache
C. Not better accounted for by another ICHD-3 diagnosis.

Box 6. Diagnostic criteria for severe migraine [31].

A. Headache frequency of at least 8 migraine days per month
B. Headache frequency < 8 migraine days per month, but associated with at least one of the following criteria:
 1. HIT-6 score \(\geq 60 \)
 2. Necessitating complete interruption of activity for \(\geq 50\% \) of headaches
 3. Failure and/or contraindication to 3 drug classes with established evidence for migraine prevention, given at an appropriate dose for an appropriate duration

3.6. Discuss trigger factors and their avoidance

Migraine triggers are factors that alone or in combination provoke attacks in people prone to migraine [32]. The role of triggers is often overestimated, and even sometimes misunderstood as causal for the disorder itself. Indeed, stimuli like bright lights, noises, smells or chocolate are commonly incriminated, but photophobia, phonophobia, osmophobia and craving for foods are characteristic symptoms of the prodromal phase of migraine. True migraine triggers do exist and are often self-evident, like menstruations and alcohol. Although lifestyle changes may be encouraged in patients with insufficient sleep, poor physical fitness or unhealthy diet, it should be made clear that lifestyle improvements will not cure migraine. Moreover, unnecessary avoidance behaviors of true and supposed triggers can negatively affect quality of life, and may even contribute to increased headache trigger sensitivity and subsequent migraine activity [33].

3.7. Check for resistant or refractory migraine

To further characterize patients with severe migraine, the European Headache Federation (EHF) recently proposed criteria for resistant and refractory migraine [34]. A debilitating headache causes serious impairment to conduct activities of daily living despite the use of pain-relief drugs with established efficacy at the recommended dose and taken early during the attack. Failure of at least two different triptans is required to qualify the nonresponse to acute treatment [34]. Resistant migraine is diagnosed after the failure of at least 3 classes of prophylactic migraine medications and refractory migraine, after the failure all of available preventatives (Box 7, Box 8). Drug

Box 7. European Headache Federation diagnostic criteria for resistant migraine [34].

A. Established diagnosis of migraine without aura and/or migraine with aura or chronic migraine according to ICHD3 criteria
B. Debilitating headache for at least 8 days per month for at least 3 months
C. Failure and/or contraindication to 3 drug classes with established evidence for migraine prevention, given at an appropriate dose for an appropriate duration

Box 8. European Headache Federation diagnostic criteria for refractory migraine [34].

A. Established diagnosis of migraine without aura and/or migraine with aura or chronic migraine according to ICHD3 criteria
B. Debilitating headache for at least 8 days per month for at least 6 months
C. Failure and/or contraindication to all drug classes with established evidence for migraine prevention, given at an appropriate dose for an appropriate duration
failure includes lack of efficacy or lack of tolerability. Ph-
phylactic medications are divided by pharmacological classes.

3.8. Perform a physical examination

A physical exam should include a systematic assessment of
blood pressure. The examination is typically normal in
migraine patients in between attacks. During attacks, exami-
nation may show pallor, hypo or hypertension, neck stiffness
or tenderness, cutaneous allodynia, and sometimes, cranial
dysautonomic symptoms. Cutaneous allodynia and neck pain
may persist between attacks [35].

3.9. Discuss complementary examinations

In case of red flags in the familial or individual medical
history, or in the physical examination, perform neuroimaging
and other tests to confirm or exclude a cause of secondary
headache and/or aura [36]. Neuroimaging plays no role in the
positive diagnosis of migraine and in the distinction between
migraine and other primary headache disorders.

3.10. Assess efficacy and tolerability of the current acute
migraine treatment

At each visit, review the current acute treatment, namely the
type of migraine medication, number of days of intake
(headache calendar), tolerance, dose, timing and route of
administration, and the respect of contraindications. Efficacy
and tolerability can be systematically assessed with the self-
administered Migraine Treatment Optimization Question-
naire (M-TOQ) (Box 9) [37].

Box 9. Acute migraine treatment optimization question-
naire M-TOQ [37].

- Are you able to return quickly to your normal ac-
tivities (i.e. work, family, leisure, social activities) after
taking your migraine medication?
- Can you count on your migraine medication to
relieve your pain within 2 h for most attacks?
- Does one dose of your migraine medication usually
relieve your headache and keep it away for at least
24 h?
- Are you comfortable enough with your migraine
medication to be able to plan your daily activities?
- Is your migraine medication well tolerated?

Table 3 - Recommendations about the diagnosis and assessment of migraine.

<table>
<thead>
<tr>
<th>Concerning the diagnosis and assessment of migraine, we recommend to</th>
<th>Strength of the recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rd1 Use ICHD-3 criteria to diagnose migraine and distinguish migraine from tension-type headache, cluster headache and trigeminal neuralgia</td>
<td>Strong</td>
</tr>
<tr>
<td>Rd2 Consider cerebral MRI and other appropriate tests only when there is a suspicion of another disorder causing secondary headache and/or aura-like symptoms, notably in case of: Migraine attacks appearing after the age of 50 years; Atypical aura because of acute onset, duration > 60 min, side-locked symptoms, or absence of visual symptoms; Chronic migraine since less than one year; Abnormal physical examination</td>
<td>Strong</td>
</tr>
<tr>
<td>Rd3 Perform or refer for emergent neuroimaging and/or other appropriate tests any patient presenting headache with: Sudden-onset (thunderclap); Recent-onset or recently worsening (< 7 days); Associated fever (without other obvious general cause); Associated neurological signs; Associated features suggestive of intoxication (particularly CO); A context of immune deficiency</td>
<td>Strong</td>
</tr>
<tr>
<td>Rd4 Encourage the use of a headache calendar in any patient with migraine</td>
<td>Strong</td>
</tr>
<tr>
<td>Rd5 Assess comorbidities, and emotional burden with the HAD scale</td>
<td>Strong</td>
</tr>
<tr>
<td>Rd6 Assess headache-related disability with the HIT-6 scale</td>
<td>Strong</td>
</tr>
<tr>
<td>Rd7 Assess blood pressure at each visit</td>
<td>Strong</td>
</tr>
<tr>
<td>Rd8 Assess efficacy and tolerability of acute migraine medications at each visit with the Migraine Treatment Optimization Questionnaire (M-TOQ)</td>
<td>Strong</td>
</tr>
<tr>
<td>Rd9 Provide appropriate reassurance, agree on realistic objectives and propose an individualized therapeutic strategy combining: An optimized acute treatment; Lifestyle improvements (regular hydration, sleep, meals and exercise); Management of modifiable risk factors for migraine chronification notably depression and medication overuse; A prophylaxis for eligible patients</td>
<td>Strong</td>
</tr>
<tr>
<td>Rd10 Refer patients: With brainstem, hemiplegic or retinal aura to a neurologist; With severe migraine (French criteria) to a neurologist or a physician certified by the national “Diplôme Inter-Universitaire Migraine et Céphalées”; With resistant or refractory migraine (EHF) to a neurologist certified by the “Diplôme Inter-Universitaire Migraine et Céphalées” or a tertiary headache center</td>
<td>Strong</td>
</tr>
</tbody>
</table>

3.11. Recommendations about the diagnosis and assessment of migraine

The recommendations are summarized in the Table 3.

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Disclosure of interest

GD has received honoraria for consultancies or speaker panel from Abbvie/Allergan, Amgen, Eli Lilly, Lundbeck, Novartis and TEVA. XM has received financial support from Allergan, Biogen, Bristol Myers Squibb, Grünenthal, Lilly, Teva, Merck-Serono, Novartis, Roche, and Sanofi-Genzyme and non-financial support from SOS Oxygène, not related to the submitted work. MLM has received financial support to the institution (Département d’Évaluation et traitement de la Douleur du CHU de Nice and/or le FHU InovPain) and honoraria from Allergan, Amgen, Boston Scientific, Grünenthal, Lilly, Lundbeck, Medtronic, Novartis, Pfizer, ReckittBenckiser, Saint-Jude, Sanofi-Aventis, Teva, UPSA, Zambon. SDG received honoraria from Abbvie/Allergan, Boehringer, Lilly, Novartis, Teva. ADO received honoraria from Allergan, Amgen, Lilly, Lundbeck, Novartis, TEVA. PG has received honoraria for consultancies or speaker panel from Abbvie, Lilly, Lundbeck, Novartis, TEVA, Allergan, Biogen Idec, Sanofi, Merck Serono, Roche. EGM received honoraria Allergan, Bayer, BMS, Boehringer, Lilly, Lundbeck, Medtronic, Novartis, Pfizer TEVA. CL has received honoraria from Amgen, Grünenthal, Homeperf, Lilly, Lundbeck, Novartis, SOS oxygène, TEVA. JM has received consultant or speaker fees from Lilly, Teva and Novartis and financial support for congress from Amgen, Novartis, SOS Oxygen, Homeperf and Elsevier. CR received consultant or speaker fees from Allergan/abbvie, Homeperf, Lilly, Lundbeck, Novartis et Teva. DV declared no disclosure of interest. ADU has received honoraria for consultancies or speaker panel from Abbvie, Amgen, Eli Lilly, Lundbeck, Novartis and TEVA.

Acknowledgements

The authors thank the following for their contributions to the writing group members: Colette Aguerre (psychologist), Isabelle Berger (neurologist), Virginie Corand (neurologist), Christelle Creac’h (neurologist), Denys Fontaine (neurosurgeon), Lou Grangeon (neurologist), Franck Henry (psychologist), Justine Hugon-Rondin (gynecologist), Guillaume Levavasseur (sport medicine, osteopathy), Lorraine Maitrot-Mantelet (gynecologist), Marc Martin (general practitioner, acupuncturist), Geneviève Plu-Bureau (gynecologist), Sylvain Redon (neurologist), Françoise Radat (psychiatrist), Jean Schoenen (neurologist).

The authors thank the following for their contributions to the reading group members: Hailé Alchaar (neurologist), Michèle Barege (neurologist), Blandine Bertin (pharmacist, pharmaco-vigilance), Pauline Boulan (neurologist), Alexandre Cauchie (general practitioner, pain physician), Judith Cottin (pharmacist, pharmaco-vigilance), Gwladys Fontaine (general practitioner pain physician), Johann Guillet (general practitioner, pain physician), Cédric Gollion (neurologist), Gérard Mick (neurologist, pain physician), Bénédicte Noelle (neurologist), Sabine Simonin (anesthesiologist, pain physician), Jacques Gaillard (pain physician), Johann Guillet (general practitioner, pain physician), Jean-Louis Lajoie (general practitioner, pain physician), Jerome Massardier (gynecologist), Mirela Muresan (neurologist), Mitra Najjar (neurologist), Anne Revol (neurologist), Roland Peyron (neurologist), Sophie Poulpin (pain physician, rheumatologist), Loic Rambaud (neurologist, pain physician), Vincent Soriot (pain physician), Valerie Wolff (neurologist).

The authors also thank Mr Quentin Peccoux and Mrs Sabine Debremaeker.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.neurol.2021.07.001.

REFERENCES

cerebrovascular events: a meta-analysis of 16 cohort studies including 1 152 407 subjects. BMJ Open 2018;8: e020498. [http://dx.doi.org/10.1136/bmjopen-2017-020498].

International meeting of the French Society of Neurology 2021

Revised guidelines of the French headache society for the diagnosis and management of migraine in adults. Part 2: Pharmacological treatment

A. Ducrosa, S. de Gaalonb, C. Roosc, A. Donnetd, P. Giraude, E. Guégan-Massardierf, M. Lantéri-Minetg, C. Lucash, J. Mawetc, X. Moisseti, D. Valadej, G. Demarquayk,*

a Department of neurology, Gui-de-Chauliac hospital, CHU Montpellier, university of Montpellier, 34000 Montpellier, France
b Department of neurology, Laennec hospital, CHU de Nantes, Nantes, France
c Emergency headache center (centre d’urgences céphalées), department of neurology, Lariboisière hospital, Assistance publique–Hôpitaux de Paris, Paris, France
d Centre d’évaluation et de traitement de la douleur, FHU INOVPAIN, hôpital de La Timone, Marseille, France
e Department of neurology, Annecy Genevois hospital, Annecy, France
f Department of neurology, Rouen university hospital, Rouen, France
g Pain department, FHU InovPain, CHU Nice Côte Azur université, Nice, France
h Centre d’évaluation et de traitement de la douleur, service de neurochirurgie, hôpital Salengro, CHRU de Lille, Lille, France
i Neurol-Dol, université Clermont Auvergne, CHU de Clermont-Ferrand, INSERM, Clermont-Ferrand, France
j Department of neurosurgery, hôpital Pitié-Sapètière, Paris, France
k Neurological hospital, Lyon, neuroscience research center (CRNL), INSERM U1028, CNRS UMR5292, Lyon, France

\textbf{INFO ARTICLE}

Article history:
Received 8 July 2021
Accepted 9 July 2021
Available online xxx

Keywords:
Episodic migraine
Chronic migraine
Guidelines
Acute treatment
Prophylactic treatment
Medication overuse

\textbf{ABSTRACT}

The French Headache Society proposes updated French guidelines for the management of migraine. This article presents the second part of the guidelines, which is focused on the pharmacological treatment of migraine, including both the acute treatment of attacks and the prophylaxis of episodic migraine as well as chronic migraine with and without medication overuse. The specific situations that can be encountered in women with migraine are also discussed, including pregnancy, menstrual migraine, contraception and hormonal replacement therapy.

© 2021 Published by Elsevier Masson SAS.

* Corresponding author.
E-mail address: genevieve.demarquay@chu-lyon.fr (G. Demarquay).
https://doi.org/10.1016/j.neurol.2021.07.006
0035-3787/© 2021 Published by Elsevier Masson SAS.
1. Introduction

Migraine is the second most common neurological disease after tension-type headache but, many affected patients remain undiagnosed and undertreated. Despite the existence of highly efficient treatments to alleviate headache (acute treatments) and decrease the frequency of attacks (preventative treatments), most patients with migraine in France remain undertreated. The French Headache Society has prepared revised guidelines to provide healthcare professionals with practical and up-to-date recommendations to optimize diagnosis and treatment of migraine, with the aim of improving the quality of life of affected patients and their relatives.

The guidelines have been divided into three parts. The first part presents guidelines for the diagnosis and assessment of migraine [1]. The second part, presented herein, is focused on the pharmacological treatment of migraine, including both the acute treatment of attacks and the prophylactic treatment of episodic migraine as well as chronic migraine with and without medication overuse. The specific situations that can be encountered in women with migraine are also discussed, including pregnancy, menstrual migraine, contraception and hormonal replacement therapy. The third part presents guidelines for the non-pharmacological treatments of migraine [2].

2. Methods

Methods are described in the first part of the updated guidelines [1] (Appendix 1).

3. Acute migraine treatment

3.1. What are the goals of acute migraine treatment?

The goals of acute migraine treatment are to obtain freedom of pain two hours after medication intake (significant pain relief is also acceptable) with 24 hours sustained response and without (or with minimal) adverse events. The relief of associated symptoms (photophobia, phonophobia, nausea and vomiting) and the ability to resume activities must also be evaluated.

In attacks of migraine with aura, the goals of acute treatment are the same as in attacks of migraine without aura for patients with headache. In addition, the acute treatment should ideally involve reduction of aura duration, but there is currently no such effective pharmacological treatment (Box 1).

3.2. What are the acute migraine treatments with demonstrated efficacy?

3.2.1. Analgesics (Table 1)

Evidence shows that paracetamol (acetaminophen) is effective in reducing migraine pain, but only in attacks of mild-to-moderate intensity with few bothersome symptoms [3,4].

Box 1. Management of migraine with aura.

1. Treatment of migraine attack
Instruct the patient to take a nonsteroidal anti-inflammatory drug (NSAID) at the beginning of the aura and a triptan at the onset of headache, even though the aura symptoms are still present. Triptans are probably not effective when given during the aura and before the onset of headache. No pharmacological treatment has proved efficacy to stop aura.

2. Prophylactic treatment
Regarding the initiation of a prophylactic treatment, follow the general recommendations for migraine (Rt15 and Rt16), considering that auras may be debilitating even in the absence of bothersome headache. Prescribe prophylactic treatments recommended for migraine in general. In some patients with troublesome auras, lamotrigine can be used and can be prescribed by a neurologist (Table 2a).

3. Prevention of stroke
Migraine with aura is associated with an increased risk of ischemic stroke. Educate the patients to prevent cardiovascular outcomes by encouraging smoking cessation, prescribing progestin-only contraceptive or non-hormonal contraception (see chapter V), regularly assessing blood pressure, and promoting regular exercise.

Evidence shows that the combination of paracetamol and caffeine with or without aspirin [5,6], and the combination of paracetamol and metoclopramide [7] are as effective as sumatriptan 50 mg at relieving acute migraine headache (level of evidence high). Evidence shows that acetylsalicylic acid (ASA; aspirin) with or without metoclopramide, and most nonsteroidal anti-inflammatory drugs (NSAIDs) are effective acute migraine treatments [8–13]. Because of the potential risk of medication overuse headache, the use of paracetamol, aspirin and NSAIDs should not regularly exceed 14 days per month [14,15]. Combination medications including caffeine increase the risk of migraine chronicization and their use must not exceed eight days per month [16]. Opioids are not recommended to treat migraine attacks as they exacerbate nausea, increase the risk of medication overuse headache, and carry the risk of misuse and abuse (level of evidence high) [14,15].

3.2.2. Triptans
Triptans are agonists of 5-HT1B/5-HT1D receptors. Triptans inhibit the release of vasoactive and pro-inflammatory neuropeptides [including calcitonin-gene-related peptide (CGRP)] and are vasoconstrictors. Seven triptans are available in France with different formulations (Table 2). Evidence shows that triptans are highly effective at relieving acute migraine pain (level of evidence high), and are superior to ergots, and superior or equal to NSAIDs and paracetamol (level of evidence medium) [17–20]. There is little difference in efficacy between different types of oral triptans, but a study in 2013 found that eletriptan was the most effective triptan at relieving pain at two and 24 hours, rizatriptan was the second most effective triptan at two hours but did not have the same
Table 1 – Non-specific acute migraine treatments (MA: specific French Market Approval for the acute treatment of migraine headache).

<table>
<thead>
<tr>
<th>Analgesics</th>
<th>Level of evidence for efficacy</th>
<th>Strength of recommendation by the French Headache Society</th>
<th>Dose, route</th>
<th>Main side effects</th>
<th>Main contraindicationsa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylsalicylate acid, aspirin</td>
<td>High</td>
<td>Strong</td>
<td>1000 mg (tablet, powder, disintegrating tablet) Maximum 3000 mg/day</td>
<td>Acetylsalicylate: digestive disorder hemorrhage, allergy, Reye syndrome</td>
<td>Acetylsalicylate: active gastroduodenal ulcer, hemorrhagic risk, pregnancy, asthma, severe hepatic, cardiac or renal insufficiency, hypersensitivity, pregnancy</td>
</tr>
<tr>
<td>Acetylsalicylate + metoclopramide (MA)</td>
<td>High</td>
<td>Strong</td>
<td>900 mg + 10 mg (powder) Maximum 3/day</td>
<td>Metoclopramide: dyskinetic syndrome, restlessness psychiatric disorder, endocrine disorder</td>
<td>Metoclopramide: gastrointestinal hemorrhage, digestive perforation, history of dyskinesia, extrapyramidal syndrome, children</td>
</tr>
<tr>
<td>Paracetamol</td>
<td>High (in mild-to-moderate attacks)</td>
<td>High in mild attacks, moderate in moderate attacks, not recommended in severe attacks</td>
<td>500, 1000 mg (tablet) Maximum 4 g/day</td>
<td>Paracetamol: hepatic and hematologic toxicity</td>
<td>Severe hepatic insufficiency</td>
</tr>
<tr>
<td>Paracetamol + caffeine</td>
<td>High</td>
<td>Low</td>
<td>500 mg + 50 mg (tablet) Maximum 6 tablets/day</td>
<td>Caffeine: palpitation insomnia</td>
<td></td>
</tr>
<tr>
<td>NSAIDs</td>
<td>Level of evidence</td>
<td>Strength of recommendation</td>
<td>Dose, route</td>
<td>Main side effects</td>
<td>Main contraindicationsa</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>High</td>
<td>Strong</td>
<td>25, 50, 100 mg (tablet) Maximum 150 mg/day</td>
<td>Hemorrhagic syndrome</td>
<td>Active gastroduodenal ulcer, Hypersensitivity to NSAIDs</td>
</tr>
<tr>
<td>Flurbiprofen</td>
<td>High</td>
<td>Strong</td>
<td>8.75 mg (tablet) Maximum 5 tablets/day</td>
<td>Digestive disorder, dyspepsia, nausea, diarrhea, constipation</td>
<td>Hemorrhagic risk (cerebral, digestive other), severe hepatic or renal insufficiency, pregnancy (after the 5th month)</td>
</tr>
<tr>
<td>Ibuprofen (MA)</td>
<td>High</td>
<td>Strong</td>
<td>200, 400 mg (tablet) Maximum 1200 mg/day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indomethacin</td>
<td>Medium</td>
<td>Moderate</td>
<td>25, 75 mg (tablet) Maximum 300 mg/day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketoprofen (MA)</td>
<td>High</td>
<td>Strong</td>
<td>100 mg (suppository) Maximum 200 mg/day</td>
<td>Dizziness, asthenia</td>
<td></td>
</tr>
<tr>
<td>Naproxen (MA)</td>
<td>High</td>
<td>Strong</td>
<td>550, 1000 mg (tablet) Maximum 1100 mg/day</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NSAIDs: nonsteroidal anti-inflammatory drugs.

a Contraindications and side effects are not exhaustive, but listed according to frequency occurrence. Interactions are not given. Refer to Vidal.
<table>
<thead>
<tr>
<th>Triptans</th>
<th>Level of evidence for efficacy</th>
<th>Strength of recommendation by the French Headache Society</th>
<th>Dose (route)</th>
<th>Main side effects</th>
<th>Main contraindications*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Almotriptan (MA)</td>
<td>High</td>
<td>Strong</td>
<td>12.5 mg (tablet) Maximum 25 mg/day</td>
<td>Paresthesia of extremities, nausea, feeling of cold, dizziness, asthenia, “chest syndrome” (feeling of constriction in the chest and neck), flushing, somnolence</td>
<td>Coronary heart disease</td>
</tr>
<tr>
<td>Eletriptan (MA)</td>
<td>High</td>
<td>Strong</td>
<td>20 or 40 mg (tablet) Maximum 80 mg/day</td>
<td>Rare cases of coronary spasms, severe hypertension, serotonin syndrome</td>
<td>Wolff Parkinson White syndrome</td>
</tr>
<tr>
<td>Frovatriptan (MA)</td>
<td>High</td>
<td>Strong</td>
<td>2.5 mg (tablet) Maximum 5 mg/day</td>
<td></td>
<td>Myocardial infarction</td>
</tr>
<tr>
<td>Naratriptan (MA)</td>
<td>High</td>
<td>Strong</td>
<td>2.5 mg (tablet) Maximum 5 mg/day</td>
<td></td>
<td>Peripheral arterial disease</td>
</tr>
<tr>
<td>Rizatriptan (MA)</td>
<td>High</td>
<td>Strong</td>
<td>5, 10 mg (tablets), 10 mg (disintegrating tablet) Maximum 20 mg/day</td>
<td>Rare cases of coronary spasms, severe hypertension, serotonin syndrome</td>
<td>Raynaud</td>
</tr>
<tr>
<td>Sumatriptan (MA)</td>
<td>High</td>
<td>Strong</td>
<td>10/20 mg (nasal spray) Maximum 300 mg/day 10 mg (subcutaneous injection) Maximum 40 mg/day 6 mg (subcutaneous injection) Maximum 12 mg/day</td>
<td>Cross allergy with sulfonamides (except for rizatriptan and zolmitriptan)</td>
<td>TIA and stroke</td>
</tr>
<tr>
<td>Zolmitriptan (MA)</td>
<td>High</td>
<td>Strong</td>
<td>2.5 mg (tablet/disintegrating tablet) Maximum 10 mg/day Nasal spray 5 mg (not available in France)</td>
<td></td>
<td>Uncontrolled hypertension</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gepants</th>
<th>Level of evidence</th>
<th>Strength of recommendation</th>
<th>Dose, route</th>
<th>Main side effects</th>
<th>Main contraindications*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rimegepant (not available in France in 2021)</td>
<td>High</td>
<td>Strong</td>
<td>75 mg (tablet) Maximum 75 mg/day</td>
<td>Nausea</td>
<td>History of hypersensitivity reaction to rimegepant</td>
</tr>
<tr>
<td>Ubrogepant (not available in France in 2021)</td>
<td>High</td>
<td>Strong</td>
<td>50 mg, 100 mg (tablets) Maximum 200 mg/day</td>
<td>Nausea, drowsiness</td>
<td>History of hypersensitivity reaction to ubrogepant</td>
</tr>
<tr>
<td>Ditans</td>
<td>Level of evidence</td>
<td>Strength of recommendation</td>
<td>Dose, route</td>
<td>Main side effects</td>
<td>Main contraindications*</td>
</tr>
<tr>
<td>Lasmiditan (not available in France in 2021)</td>
<td>High</td>
<td>Moderate</td>
<td>50 mg, 100 mg (tablets) Maximum 200 mg/day No more than one dose should be taken in 24 hours (FDA)</td>
<td>Common (> 2%): dizziness, fatigue, paresthesia, sedation, nausea and/or vomiting, muscle weakness Significant driving impairment Central nervous system depression (dizziness, sedation) Rare (1%): hallucinations, euphoria Risk of misuse or abuse Rare cases of serotonin syndrome</td>
<td>Should be used with caution if used in combination with alcohol, cannabis or other CNS depressants No driving within the first 8 hours after intake (FDA)</td>
</tr>
</tbody>
</table>

NSAIDs: nonsteroidal anti-inflammatory drugs; FDA: Food and Drug Administration.
*Contraindications and side effects are not exhaustive, but listed according to frequency occurrence. Interactions are not given. Refer to Vidal.
efficacy at 24 hours, and oral sumatriptan 100 mg was the third most effective treatment at 2 hours and maintained efficacy at 24 hours [18]. A systematic review of the effectiveness of the various routes and doses of sumatriptan concluded that subcutaneous sumatriptan 6 mg shows the greatest efficacy in terms of complete pain relief at 2 hours, providing more rapid pain relief than the other routes but has higher levels of adverse events (level of evidence high) [21]. Because of pharmacokinetic and genetic factors, a patient unresponsive to one triptan may respond to others, and a patient not tolerating one triptan may tolerate others [22].

Triptans are contraindicated in patients with increased cardiovascular risk. Evidence from post-marketing studies and real-life practice shows that triptans are safe and do not induce cardiovascular adverse events when contraindications are respected.

In patients with long migraine attacks, headache and other symptoms may recur within 48 hours after initial successful treatment with a triptan. These relapses may be treated by repeating the triptan, but there is a risk of further relapses with this solution. In patients with troublesome relapses, simultaneous treatment at the beginning of the attacks with a combination of a triptan and an NSAID has proven efficacy [23]. Because of the potential risk of medication overuse headache, the use of triptan should not regularly exceed eight days per month [14,15].

Approximately 30–40% of persons with migraine experience insufficient efficacy and/or tolerability to triptans for acute treatment [24–26]. A recent systematic review suggested that a proportion of patients with insufficient efficacy and/or tolerability to one triptan may benefit from switching to a higher dose of the same triptan (sumatriptan 50 mg to 100 mg, eletriptan 40 mg to 80 mg), switching to a different formulation (nasal spray, subcutaneous, oral disintegrating tablet), switching to a different triptan, taking the triptan earlier in the attack, and/or combining a triptan with an NSAID (level of evidence fair) [22]. There are currently no available data about the proportion of patients who may benefit from a third triptan after failure to respond to an initial two triptans [22]. Women treated with triptans have a higher risk for headache recurrence and adverse events than men, despite similar rates of efficacy [27]. Other factors increasing risk of insufficient efficacy and/or tolerability to triptans include attacks with aura [28], severe baseline headache severity, photophobia, phonophobia, nausea, and comorbid depression [22].

3.2.3. Ergots
Ergotamine (combined with caffeine) is an older acute migraine treatment that is still occasionally used. Ergots are associated with an increased risk of serious adverse effects (level of evidence high) [29] and are contraindicated in patients with increased cardiovascular risk. Dihydroergotamine (DHE) is the best tolerated of this class, but still has more adverse effects than NSAIDs and triptans.

3.2.4. Anti-emetics
Evidence shows that oral and intravenous metoclopramide, and oral domperidone are effective in the treatment of nausea associated with migraine attacks, and may improve the absorption of other oral acute migraine treatments (level of evidence high) [7,13,30,31].

3.2.5. Gepants
Gepants are small antagonists of the calcitonin gene-related peptide (CGRP) receptor. Evidence shows that oral ubrogepant and rimegepant are effective at relieving pain associated with acute migraine [32–34]. There is a lack of evidence regarding the efficacy of gepants relative to other antimigraine treatments and in patients having insufficient efficacy and/or tolerability to triptans [35]. Gepants seem to cause less side effects than triptans, but could potentially carry a cardiovascular risk, although evidence to support or refute this concern is not available at the moment [36].

3.2.6. Ditans
Lasmiditan is a highly selective 5-HT1₁ receptor agonist without vasoconstrictive properties. Evidence shows that lasmiditan is effective at relieving migraine pain [37–39]. There is a lack of evidence regarding the efficacy of lasmiditan relative to other antimigraine treatments and in patients having insufficient efficacy and/or tolerability to triptans. Lasmiditan does not constrict the coronary arteries either in vitro or in vivo, and does not appear to carry the same cardiovascular risk as triptans [36]. Adverse effects of lasmiditan include central nervous system depression and marked sleepiness. Therefore, the United States Food and Drug Administration (FDA) issued a warning that driving should be proscribed during eight hours after lasmiditan intake. Therapeutic doses of lasmiditan were associated with a significant increased risk of drug-liking effects as compared to placebo, suggesting there is a potential risk of lasmiditan misuse or abuse (level of evidence medium) [40]. Effects of lasmiditan in relation to medication overuse headache are unknown. As of June 2021, lasmiditan has no market approval in France.
3.3. **Recommendations on acute migraine treatment**

The recommendations are summarized in the Table 3.

<table>
<thead>
<tr>
<th>Table 3 – Recommendations on acute migraine treatment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concerning education and initial strategy of acute treatment, we recommend to</td>
</tr>
<tr>
<td>Rt1 Explain the goals of acute treatment, namely complete relief of headache two hours after medication intake with 24 hours sustained response and without adverse events</td>
</tr>
<tr>
<td>Rt2 Explain to patients with migraine with aura that there is currently no pharmacological treatment proved effective in stopping aura</td>
</tr>
<tr>
<td>Rt3 Explain that acute treatments must be taken early (within one hour of headache onset), with an adequate dosage and a route adapted to the severity of digestive symptoms</td>
</tr>
<tr>
<td>Rt4 Explain that the use of acute treatments should be limited to a maximum of eight days per month, because overusing medication carries the risk of medication overuse headache</td>
</tr>
<tr>
<td>Rt5 Encourage patients to use a headache calendar (headache frequency, intensity and acute medication), which will be reviewed at each visit</td>
</tr>
<tr>
<td>Rt6 Prescribe an acute treatment with an NSAID and a triptan, both chosen according to previous treatments and patient’s preference</td>
</tr>
<tr>
<td>Rt7 Provide an education about the strategy for acute migraine treatment:</td>
</tr>
<tr>
<td>a. When headache is mild, the patient should take an NSAID, and add a triptan in case of insufficient response after one hour</td>
</tr>
<tr>
<td>b. When headache is moderate or severe, the patient should take a triptan, and add an NSAID in case of insufficient response after one hour</td>
</tr>
<tr>
<td>c. In migraine with aura, the patient should take an NSAID at the beginning of the aura and a triptan at the onset of headache</td>
</tr>
<tr>
<td>Rt8 Avoid prescribing opiates to treat migraine due to the risks of misuse, abuse, and of medication overuse headache</td>
</tr>
<tr>
<td>Rt9 Prescribe a combination of paracetamol and metoclopramide in patients with contraindications or intolerance to NSAIDs, aspirin and triptans</td>
</tr>
<tr>
<td>Rt10 Prescribe oral or parenteral metoclopramide (suppository or intravenous) to treat attacks with severe nausea or vomiting</td>
</tr>
<tr>
<td>Rt11 Explain that the efficacy and tolerability of the acute treatment is evaluated after three attacks, and plan a follow-up visit</td>
</tr>
<tr>
<td>Concerning the evaluation and optimization of acute treatment, we recommend to</td>
</tr>
<tr>
<td>Rt12 Use the Migraine Treatment Optimization Questionnaire (M-TOQ) at each visit and optimize the acute treatment in any patient responding “No” to one or more items</td>
</tr>
<tr>
<td>Rt13 Choose one or several strategies to optimize efficacy and/or tolerability of acute treatment and educate the patient</td>
</tr>
<tr>
<td>a. To treat as early as possible into the headache phase</td>
</tr>
<tr>
<td>b. To increase the dose of NSAID and/or triptan when applicable</td>
</tr>
<tr>
<td>c. To combine a triptan and an NSAID simultaneously when attacks are resistant to a triptan alone and/or when relapses are troublesome</td>
</tr>
<tr>
<td>d. To switch to a non-oral formulation (NSAID suppository, sumatriptan nasal spray or subcutaneous) and/or add metoclopramide in case of bothersome digestive symptoms</td>
</tr>
<tr>
<td>e. To switch the NSAID to another NSAID</td>
</tr>
<tr>
<td>f. To combine a triptan</td>
</tr>
<tr>
<td>Rt14 Diagnose resistance to</td>
</tr>
<tr>
<td>a. NSAIDs only after complete inefficacy of at least two NSAIDs, used with adequate dose and route, each tested on at least three distinct attacks</td>
</tr>
<tr>
<td>b. Triptans only after complete inefficacy of at least two triptans, used with adequate dose and route, each tested on at least three distinct attacks</td>
</tr>
</tbody>
</table>

NSAIDs: non-steroidal anti-inflammatory drugs.

4. **Prophylactic treatment**

4.1. **What are the goals of prophylactic treatment of migraine?**

The preventative treatment aims at reducing monthly migraine days by at least 50% in episodic migraine and by at least 30% in chronic migraine. Prophylaxis also aims at reducing consumption of acute treatments, intensity and duration of attacks, and improving quality of life. Most patients under prophylaxis will still have attacks, and must be instructed how to treat them (see above).

In migraine with aura, the aims are also to reduce the frequency, duration and severity of auras, but there is a lack of high-quality studies investigating the effectiveness of drugs.
Table 4 – Oral prophylactic treatments: dosage, side effects and contraindications.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Level of evidence for efficacy</th>
<th>Strength of recommendation by the French Headache Society</th>
<th>Daily dosage Minimum–Maximum (mean daily dosage)</th>
<th>Main side effects</th>
<th>Main contraindications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amitriptyline (yes)</td>
<td>High in EM</td>
<td>Strong in EM Moderate in CM</td>
<td>10–100 mg (25 mg) Once at dinner time</td>
<td>Dry mouth, somnolence, weight gain</td>
<td>Absolute: glaucoma, prostatic adenoma Relative: obesity</td>
</tr>
<tr>
<td>Beta-blocker</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propranolol (yes)</td>
<td>High in EM</td>
<td>Strong in EM Weak in CM</td>
<td>20–240 mg (80 mg) BID or once in the morning (extended release)</td>
<td>Common: asthenia, poor tolerance to effort Rare: depression</td>
<td>Absolute: asthma, heart failure, atrio-ventricular block, bradycardia Relative: depression</td>
</tr>
<tr>
<td>Metoprolol (yes)</td>
<td>High in EM</td>
<td>Strong in EM Not recommended in CM</td>
<td>50–200 mg (100 mg) Once in the morning (extended release)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nebivolol (no)</td>
<td>Medium in EM</td>
<td>Moderate in EM Not recommended in CM</td>
<td>5–10 mg (10 mg) Once in the morning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atenolol (no)</td>
<td>High in EM</td>
<td>Moderate in EM Weak in CM</td>
<td>50–200 mg (100 mg) Once in the morning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candesartan (no)</td>
<td>Medium in EM</td>
<td>Moderate in CM Weak in CM</td>
<td>5–40 mg (20 mg) BID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flunarizine (yes)</td>
<td>High in EM</td>
<td>Moderate in EM Weak in CM</td>
<td>5–10 mg (5 mg) Once in the evening Stop after 6 months 5–40 mg (20 mg) Once a day</td>
<td>Common: somnolence, weight gain, depression Rare: parkinsonism Hypotension, dry cough, exantheme, impaired renal function</td>
<td>Depression, obesity, Parkinson disease, parkinsonism, pregnancy Angio-edema, renal artery stenosis, renal impairment, hyperkalemia, pregnancy Absolute: hypersensitivity to lamotrigine, breastfeeding Relative: previous allergy to another antiepileptic</td>
</tr>
<tr>
<td>Lisinopril (no)</td>
<td>Fair in EM</td>
<td>Moderate in EM Not recommended in CM</td>
<td>25–300 mg (100 mg) Once or twice a day</td>
<td>Common: dizziness, insomnia Rare: serious hypersensitivity reactions, depression, suicidal ideation</td>
<td></td>
</tr>
<tr>
<td>Lamotrigine (no)</td>
<td>Fair in migraine with aura</td>
<td>Weak in migraine with aura Not recommended in migraine without aura</td>
<td>8–32 mg (16 mg) BID or once a day</td>
<td>Hyptension</td>
<td>Absolute: heart failure, renal artery stenosis, renal impairment, pregnancy Relative: hypotension</td>
</tr>
<tr>
<td>Levetiracetam (no)</td>
<td>Medium in EM</td>
<td>Moderate in EM Not recommended in CM</td>
<td>500–3000 mg Twice a day</td>
<td>Irritability, depression</td>
<td>Relative: renal impairment</td>
</tr>
<tr>
<td>Oxetorone (yes)</td>
<td>High in EM</td>
<td>Moderate in EM Not recommended in CM</td>
<td>50–300 mg (150 mg) BID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pizotifene (yes)</td>
<td>Medium in EM</td>
<td>Moderate in EM Not recommended in CM</td>
<td>50–200 mg (100 mg) Once or twice a day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Topiramate (yes)</td>
<td>High in EM</td>
<td>Moderate in CM Strong in CM</td>
<td>250–2000 mg (750 mg) Once in the evening or twice a day</td>
<td>Common: paresthesia, weight loss, cognitive effects (word-finding difficulties), depression Rare: renal calculi, acute myopia with secondary angle closure glaucoma</td>
<td>Absolute: hypersensitivity to topiramate, pregnancy, glaucoma, severe pulmonary disease, metformin use, hepatic disease, nephrolithiasis, renal failure Relative: depression, suicidal ideation</td>
</tr>
<tr>
<td>Valproate (no)</td>
<td>High in EM</td>
<td>Moderate in CM Do never use in women of childbearing potential</td>
<td>37.5–300 mg (75–150 mg) Once a day</td>
<td></td>
<td>Absolute: liver disease, pregnancy, mitochondrial disease Relative: obesity Do never use in women of childbearing potential</td>
</tr>
<tr>
<td>Venlafaxine (no)</td>
<td>Fair in EM</td>
<td>Moderate in CM Not recommended in CM</td>
<td>37.5–300 mg (75–150 mg) Once a day</td>
<td>Common: nausea, dry mouth, hyperhydrosis</td>
<td>Hyperesensitivity to venlafaxine</td>
</tr>
</tbody>
</table>
specifically for such purposes. Since prophylactic drugs have been investigated in populations mixing migraine patients with and without aura, migraine with aura is mostly treated with the same preventatives as migraine without aura (Box 1).

4.2. What treatments are effective for migraine prophylaxis?

Oral medications with a demonstrated efficacy in the prophylaxis of migraine are listed in Table 4. A large meta-analysis showed efficacy in the prevention of episodic migraine in at least three randomized controlled trials (RCTs) against placebo for amitriptyline, flunarizine, metoprolol, pizotifen, propranolol, topiramate and valproate [41]. Effective drugs in episodic migraine with less than three RCTs against placebo showing efficacy, and available in France, include several beta-blockers (atenolol, bisoprolol, timolol) and two other antihypertensives (lisinopril, candesartan), one anti-epileptic (levetiracetam), one antidepressant (venlafaxine) and one antihistaminic (oxetone). In addition, fair-quality evidence supports the use of lamotrigine in the prophylaxis of migraine with aura. A once-daily dosage might improve adherence to the oral migraine prophylactic drugs [29].

Evidence shows efficacy of anti-CGRP and anti-CGRP-receptor monoclonal antibodies (CGRP-MABs) in both episodic and chronic migraine. Evidence shows that onabotulinum toxin A is an effective prophylactic treatment of chronic migraine but not episodic migraine.

4.2.1. Antihypertensives

High-quality evidence shows that propranolol, the most well studied beta-blocker, is effective in episodic migraine [42]. A recent meta-analysis of four non-placebo-controlled studies suggests that propranolol may also have a benefit in chronic migraine, with an efficacy comparable to that of valproic acid and flunarizine [42]. Evidence shows that metoprolol reduces headache frequency in episodic migraine, while atenolol, bisoprolol and timolol have lower efficacy and have been less studied [42].

Two placebo-controlled trials showed that candesartan 16 mg is superior to placebo and non-inferior to propranolol in episodic migraine [43,44]. Candesartan was shown to be effective in chronic migraine in a single RCT [43]. Evidence from a single trial for each drug shows that telmisartan [45] and lisinopril [46] are effective in episodic migraine.

4.2.2. Flunarizine

Evidence from two meta-analyses shows that flunarizine, a calcium-channel blocker without blood pressure influence, is effective in the prophylaxis of episodic migraine [41,47]. Flunarizine also showed efficacy in chronic migraine in a single non-placebo-controlled randomized trial [48]. Flunarizine can induce parkinsonism, the risk of which increases with older age, presence of comorbidities, exposure to high doses and longer duration of exposure [49]. In France, prescription of flunarizine is limited to six months.

4.2.3. Antiepileptics

Topiramate and valproic acid are the most commonly studied antiepileptics used in migraine prophylaxis and evidence shows they are both effective in episodic migraine [41]. Topiramate 100 mg/day has clearly demonstrated efficacy in the prevention of chronic migraine, both with and without medication overdose [50,51]. Sodium valproate may have some efficacy in chronic migraine [52,53].

Two meta-analyses showed that levetiracetam was effective in episodic migraine [41,54]. Levetiracetam also showed efficacy in chronic migraine in one study, but was inferior to valproic acid [53]. Currently, levetiracetam is not widely used in migraine prophylaxis in France.

Evidence from small-sized trials and a meta-analysis suggest that lamotrigine is effective in the prevention of migraine with aura, achieving a reduction in the frequency of attacks and the duration of aura (Box 1) [41,55]. There is not any proof of efficacy of lamotrigine in migraine without aura. Lamotrigine must not be used in the prophylaxis of migraine without aura.

4.2.4. Antidepressants

Evidence from old studies [56–58] and two meta-analyses shows that amitriptyline is superior to placebo to reduce headache by 50% in episodic migraine [41,59]. Data show that amitriptyline has an efficacy in episodic migraine comparable to that of propranolol [60] and topiramate [61]. Amitriptyline may have some efficacy in chronic migraine [62]. Some older studies have suggested that fluoxetine [63–66] and venlafaxine at a dosage of 150 mg [67,68] might reduce the frequency of migraine attacks. A 2015 Cochrane review concluded that the use of selective serotonin reuptake inhibitors (SSRIs) for migraine prophylaxis was not supported by evidence [69]. A 2020 systematic review and meta-analysis concluded that serotonin-norepinephrine reuptake inhibitors (SNRIs) were superior to placebo in the prophylaxis of migraine, and most of the analyzed trials included venlafaxine [70].

4.2.5. Pizotifen

Pizotifen was shown to be more effective than placebo in nine RCTs [41].

4.2.6. Oxetone

There is very limited evidence that oxetone is superior to placebo in the prophylaxis of episodic migraine [20]. Oxetone has market approval in France and is widely used in primary and secondary care for migraine prophylaxis [71].

4.2.7. OnabotulinumtoxinA

OnabotulinumtoxinA has established efficacy in the prevention of chronic migraine with or without medication overuse, but is not superior to placebo for the treatment of episodic migraine (level of evidence high) [72]. OnabotulinumtoxinA proved superiority to placebo when administered according to the PREMPT RCT protocol with 155–195 units injected at 31–39 sites in seven muscles all over the face, skull and neck, repeated every three months [73,74]. At least six months of treatment (two cycles of injections) seem necessary to observe maximal efficacy [73,74]. Since the pivotal trials published in 2010, evidence showing efficacy, tolerance and safety of onabotulinumtoxinA in chronic migraine at long-term (108 weeks) have been published [75,76]. Side effects are minimal. OnabotulinumtoxinA should be administered.
according to the PREEMPT injection protocol, i.e. injecting 155 U-195 U to 31–39 sites every 12-weeks.

4.2.8. Monoclonal anti-CGRP and anti-CGRP-receptor antibodies
Calcitonin-gene related peptide (CGRP) is the main neuropetide released by the trigeminal nerve and responsible for migraine headache. Monoclonal antibodies targeting the CGRP pathway (CGRP-MABs) belong to a new specific therapeutic class, including erenumab, fremanezumab, galcanezumab and ubrogepant, the first blocking the CGRP-receptor and the other three blocking CGRP itself (Table 5). CGRP-MABs have demonstrated efficacy in the prevention of both episodic migraine and chronic migraine without and with medication overuse, including in patients refractory to two to four previous oral preventive treatments (level of evidence high) [77–78]. RCTs have demonstrated excellent safety and tolerability of the four CGRP-MABs over placebo in the speed of onset of efficacy, the achievement of a super-response with 75% or even 100% reduction in the monthly number of migraine days, the rate of efficacy in the most severely affected patients (previous failure of prophylaxis and/or medication overuse), the reduction of migraine-related functional impact and the improvement of productivity and quality of life (level of evidence medium) [79].

No direct comparison has been made between the CGRP-MABs, but a recent meta-analysis showed no difference between them in terms of efficacy and safety (level of evidence high) [80]. There is currently no available data about the proportion of patients who may respond to a second CGRP-MAB after failure to respond to an initial one, and about the proportion of patients who may respond to the MAB targeting the CGRP-receptor after failure to respond to one of the MABs targeting CGRP and vice-versa. A recent RCT compared erenumab to topiramate, but the results are not available [81]. The LIBERTY [82], FOCUS [83] and CONQUER [84] RCTs showed superiority of erenumab, fremanezumab and galcanezumab respectively over placebo in patients with a documented history of failure of two to four classical oral migraine preventative medications, because of inefficacy or intolerance (level of evidence high). The trial with eptinezumab is still ongoing. Based on these studies, the French Transparency Commission decided that erenumab, fremanezumab and galcanezumab was indicated in patients having at least eight monthly migraine days and a history of failure to at least two oral prophylactic medications. Only neurologists can prescribe CGRP-MABs in France.

There is currently no evidence about the long-term safety of CGRP-MABs. Given the vasodilatory role of CGRP, a prolonged blockade of CGRP pathways might increase the consequences of a potential cardiac or cerebral ischemic event. There are currently not any warning signs from RCTs [77–84] and from extension phases of RCTs, including for erenumab with a follow-up of five years [85,86], but patients with a history of cardiovascular disorder were not included in the RCTs. There is a need for long-term pharmacovigilance surveys [87]. There are currently very limited data about CGRP-MABS and pregnancy. In a recent survey of the safety profile of erenumab, galcanezumab and fremanezumab in pregnancy, no specific maternal toxicities, patterns of major birth defects, or increased reporting of spontaneous abortion were found [88]. Finally, there are currently no data on the incidence and consequences of neutralizing antibodies during long-term treatment with CGRP-MABs. Given the cost of CGRP-MABs, there is an important need for large cost-efficacy studies [79].

4.3. What is the evidence for prophylactic treatment of medication overuse headache?
There has been a long debate about the practical strategy in patients with chronic migraine with medication overuse.

| Table 5 – Injectable prophylactic treatments: dosage, side effects and contraindications. |
|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Active component (French Market Approval, yes or no) | Level of evidence for efficacy | Strength of recommendation by the French Headache Society | Daily dosage (Minimum–Maximum, mean daily dosage) | Side effects | Contraindications |
| OnabotulinumtoxinA (yes) | High in CM Not efficient in EM | Strong in CM Not recommended in EM | 31–39 injections of 155–195 UI (195 UI) in 7 muscular groups, quarterly | Injection site pain | Absolute: myasthenia gravis, amyotrophic lateral sclerosis |
| Anti-CGRP or CGRP-receptor antibodies | | | | | |
| Erenumab (yes) | High in EM | Strong in EM | 70–140 mg SC monthly | Injection site pain or redness, constipation, allergy | Myocardial infarction, stroke, TI, uncontrolled vascular risk factor |
| Eptinezumab (no) | High in CM | Strong in CM | 100–300 mg IV quarterly | | |
| Fremanezumab (yes) | High in EM | Strong in EM | 225 mg SC monthly | | |
| Galcanezumab (yes) | High in CM | Strong in EM | 675 mg SC quarterly | | |

headache (MOH). Some authors recommended a two months abrupt and complete withdrawal before considering the introduction of prophylaxis [89]. Nevertheless, when patients with MOH are treated solely by withdrawal without any other preventive treatment, about one-third cannot tolerate or will not complete the process, one-third withdraws and improves, and one-third withdraws but does not improve [89,90]. Furthermore, evidence shows that the frequency of headache is significantly reduced in patients with chronic migraine receiving prophylaxis with topiramate, onabotulinumtoxinA or CGRP-MABs, whether or not they overuse acute medication at inclusion (level of evidence high) [91]. Of note, patients overusing opioids were not included in CGRP-MABs trials. In MOH, recent evidence suggests that the best therapeutic strategy is withdrawal combined with preventive treatment from the start (level of evidence medium) [92]. Evidence also suggests that educating patients about the risks of migraine chronicization induced by medication overuse can improve global outcomes (level of evidence fair) [93].

4.4. Recommendations for pharmacological prophylaxis of migraine

The recommendations are summarized in the Table 6. These recommendations will be updated after marketing approval of eptinezumab and oral gepants.

<table>
<thead>
<tr>
<th>Table 6 – Recommendations for pharmacological prophylaxis of migraine.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regarding the initiation of prophylactic treatment, we recommend to</td>
</tr>
<tr>
<td>Rt15 Determine individual patient’s eligibility to prophylaxis based on the patient’s preference, headache diary or calendar, criteria for severe migraine and chronic migraine, HIT-6 and HAD scales</td>
</tr>
<tr>
<td>Rt16 Initiate a prophylactic treatment in any patient a. Using acute medications eight days or more per month since at least three months b. With severe migraine according to French criteria c. With chronic migraine according to ICHD-3 criteria d. With a HIT-6 scale of 60 or more e. With debilitating migraine attacks despite optimization of acute treatment</td>
</tr>
</tbody>
</table>

| **Regarding patient education and optimal follow-up plan, we recommend to** | **Strength of the recommendation** |
|---|
| Rt17 Explain the goals of prophylactic migraine treatment a. The objective is to reduce monthly migraine days by 50% in episodic migraine and by 30% in chronic migraine b. Efficacy will be judged during the third month of treatment (weeks 8–12) c. Prophylaxis also aims at reducing consumption of acute treatments, intensity and duration of attacks, and improving quality of life d. Failure can be due to insufficient efficacy and/or tolerability | Strong |
| Rt18 Start an oral prophylaxis as monotherapy and at a low-dose, and increase progressively to achieve optimal daily dose, taking into account possible side effects | Strong |
| Rt19 Explain that adherence to the prophylaxis is mandatory. When appropriate, prescribe once-daily dosage to improve compliance | Strong |

| **As first-line prophylaxis for episodic migraine, our recommendations are** | **Strength of the recommendation** |
|---|
| Rt20 Prescribe propranolol or metoprolol as first-line medication in any suitable patient with episodic migraine, because of the high level of evidence of efficacy | Strong |
| Rt21 Prescribe amitriptyline, candesartan or topiramate as first-line medication in patients with episodic migraine not suitable to beta-blockers, depending on the patient’s preferences and comorbidities | Strong |

| **As first-line prophylaxis for chronic migraine, our recommendations are** | **Strength of the recommendation** |
|---|
| Rt22 Prescribe topiramate as first-line medication in any suitable patient with chronic migraine, because of the high level of evidence of efficacy | Strong |
| Rt23 Prescribe another recommended prophylaxis in patients with chronic migraine not suitable to topiramate, depending on the patient’s preferences and comorbidities | Strong |
| Rt24 In patients with chronic migraine and medication overuse headache, prescribe a first-line prophylactic medication and advise an ambulatory withdrawal of the overused acute medication | Strong |

| **To evaluate and adapt the prophylactic treatment, our recommendations are** | **Strength of the recommendation** |
|---|
| Rt25 Assess efficacy, tolerability, compliance, and burden of migraine by interview, review of the calendar, and systematic use of HIT-6 and HAD scales at each visit. The efficacy of the prophylaxis should be evaluated after the third month of treatment except for onabotulinumtoxinA whose efficacy should be evaluated after six months | Strong |
| Rt26 In case of efficacy and good tolerability, continue the prophylaxis for 6–12 months, then decrease slowly before considering cessation. Restart the same treatment if the frequency of attacks increases again during decrease or after cessation | Strong |
Table 6 (Continued)

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Strength of the recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>To evaluate and adapt the prophylactic treatment, our recommendations are</td>
<td></td>
</tr>
<tr>
<td>Rt27 In case of insufficient efficacy and/or tolerability, choose one or several strategies to optimize the prophylaxis, and educate the patient</td>
<td></td>
</tr>
<tr>
<td>a. Check for compliance</td>
<td>Strong</td>
</tr>
<tr>
<td>b. Check for medication overuse, including analgesics for non-headache pain</td>
<td></td>
</tr>
<tr>
<td>c. In case of insufficient efficacy and good tolerability, increase daily doses to the maximal recommended dose with an acceptable tolerance</td>
<td></td>
</tr>
<tr>
<td>d. Switch to another prophylaxis</td>
<td></td>
</tr>
<tr>
<td>Regarding switching prophylaxis in episodic migraine, our recommendations are</td>
<td></td>
</tr>
<tr>
<td>Rt28 After failure of the first prophylaxis in episodic migraine, select a second recommended medication, depending on the patient’s preferences and comorbidities</td>
<td></td>
</tr>
<tr>
<td>Strong</td>
<td></td>
</tr>
<tr>
<td>Rt29 After failure of two prophylactic medications in patients with less than eight migraine days per month, select another recommended medication depending on the patient’s preferences and comorbidities</td>
<td></td>
</tr>
<tr>
<td>Strong</td>
<td></td>
</tr>
<tr>
<td>Rt30 After failure of at least two prophylactic treatments in patients with at least eight monthly migraine days, prescribe a CGRP-MAB selected among erenumab, fremanezumab and galcanezumab, based on the patient’s preferences</td>
<td></td>
</tr>
<tr>
<td>Strong</td>
<td></td>
</tr>
<tr>
<td>Regarding switching prophylaxis in chronic migraine, our recommendations are</td>
<td></td>
</tr>
<tr>
<td>Rt31 After failure of the first oral prophylaxis in chronic migraine, select a second recommended oral medication, based on the patient profile, comorbidities, and the patient’s preferences</td>
<td>Strong</td>
</tr>
<tr>
<td>Rt32 After failure of at least two oral treatments including topiramate in chronic migraine, prescribe a treatment with onabotulinumtoxin A or a CGRP-MAB selected among erenumab, fremanezumab and galcanezumab, based on the patient’s preferences</td>
<td>Strong</td>
</tr>
<tr>
<td>For prophylaxis of resistant or refractory migraine, our recommendations are</td>
<td></td>
</tr>
<tr>
<td>Rt33 After failure of a CGRP-MAB in a patient with refractory episodic migraine, consider switching to another CGRP-MAB, with or without combination with an oral prophylactic medication</td>
<td>Moderate</td>
</tr>
<tr>
<td>Rt34 After failure of a CGRP-MAB in a patient with refractory chronic migraine, consider switching to another CGRP-MAB, or to treatment with onabotulinumtoxin A, both with or without combination with an oral treatment</td>
<td>Moderate</td>
</tr>
<tr>
<td>CGRP-MABs: calcitonin-gene-related peptide-receptor monoclonal antibodies.</td>
<td></td>
</tr>
</tbody>
</table>

5. Specific situations in women with migraine

5.1. Migraine and pregnancy

5.1.1. What is the impact of pregnancy on migraine?

Migraine without aura usually improves or even ceases during pregnancy, especially after the first trimester (level of evidence high) [94,95]. However, 20% of women with migraine will have at least one migraine attack during pregnancy [96]. Unlike migraine without aura, migraine with aura can persist, worsen or even start during pregnancy [94,95].

5.1.2. Which medications can be used for acute migraine treatment during pregnancy?

Evidence shows that paracetamol (acetaminophen) [97,98] and triptans have a good safety profile (level of evidence high) [99-104]. The French reference center for teratogenic agents (CRAT) recommends to favor sumatriptan after failure of paracetamol, and zolmitriptan or rizatriptan after failure of sumatriptan [105]. NSAIDs are contraindicated after 24 weeks of pregnancy due to the risk of premature closure of the ductus arteriosus [97]. NSAIDs exposure close to the conception may increase the risk of miscarriage (level of evidence fair) [106]. Some studies suggested to avoid NSAIDs during the first trimester [97], but a recent large database study found that the risks of spontaneous abortion and major birth defects did not differ between women exposed and non-exposed to ibuprofen (level of evidence medium) [107].

5.1.3. Which medications can be used for migraine prophylaxis during pregnancy?

Beta-blockers are not associated with an increased risk of malformations (level of evidence high) [108-110]. Amitriptyline may be used [97,98,105] and studies [85,104] suggesting an increased risk of fetal/child adverse events are scarce (level of evidence fair). The French CRAT states that published data about the use of amitriptyline during pregnancy are numerous and reassuring [105]. Neonatal symptoms may rarely appear in the first days of life of newborns when the mother took high doses of amitriptyline until delivery. Symptoms are usually transient and mild (respiratory distress, hyperexcitability, tone disturbances, slowed transit, sedation). A neonatal withdrawal syndrome may also occur and seems to be favored by an abrupt cessation of amitriptyline before childbirth [105].

According to the French CRAT, venlafaxine may be used during pregnancy in women with depression requiring a pharmacological treatment, and may thus be used in women with depression and associated migraine during pregnancy.
5.1.4. Which migraine medications are contraindicated during pregnancy?
Valproic acid is contraindicated because of a significant increased risk of severe fetal malformations as well as of cognitive deficits, mental retardation and autism in children exposed in utero. Topiramate is contraindicated in pregnant women and in those who wish to become pregnant because of an increased risk of severe malformations in fetuses exposed in utero. Candesartan and lisinopril are contraindicated because of fetal renal toxicity [97,105]. All the ergots are contraindicated [100]. Because of the absence of data, CGRP-MABs should not be used during pregnancy.

5.1.5. Impact of migraine on pregnancy
A recent meta-analysis showed that migraine is associated with an increased risk of preeclampsia and low birth weight (level of evidence high) [86].

5.1.6. Recommendations for management of migraine before and during pregnancy
The recommendations are summarized in the Table 7.

5.2. Menstrual migraine
5.2.1. How to diagnose menstrual migraine?
ICHD-3 recognizes two types of attacks in relation with menstruation, which is defined as the endometrial bleeding resulting either from the normal menstrual cycle or from the withdrawal of exogenous estrogens [111]. Pure menstrual migraine is diagnosed when attacks are occurring exclusively on day 1 ± 2 (i.e., days −2 to +3, there is no day 0) of menstruation in at least two out of three menstrual cycles, and at no other times of the cycle. Menstrually-related migraine is diagnosed when attacks are occurring on day 1 ± 2 of menstruation in at least two out of three cycles, and additionally at other times of the cycle.

Many women over-report an exclusive association between migraine attacks and menstruation, and only 8% have pure menstrual migraine [112]. Compared to other migraine attacks, menstrual attacks are mostly without aura (level of evidence medium) [113,114], and are longer, more disabling, more often associated with nausea and less responsive to acute treatment (level of evidence fair) [112].

Table 7 – Recommendations for management of migraine in women desiring pregnancy and during pregnancy.

<table>
<thead>
<tr>
<th>Recommendations for management of migraine in women desiring pregnancy</th>
<th>Strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rw1 Explain that migraine can be treated during pregnancy and in case of breastfeeding but self-medication should be formally avoided</td>
<td>Strong</td>
</tr>
<tr>
<td>Rw2 Explain that migraine usually improves during pregnancy, notably after the first trimester and in migraine without aura</td>
<td>Strong</td>
</tr>
<tr>
<td>Rw3 Explain that migraine does not modify the overall outcome of pregnancy, but is associated with an increased risk of gravid hypertension and preeclampsia</td>
<td>Strong</td>
</tr>
<tr>
<td>Rw4 For acute migraine treatment in women desiring pregnancy</td>
<td>Strong</td>
</tr>
<tr>
<td>a. Prescribe paracetamol for mild attacks</td>
<td></td>
</tr>
<tr>
<td>b. Prescribe triptans for moderate or severe attacks</td>
<td></td>
</tr>
<tr>
<td>c. Avoid NSAIDs and aspirin (> 500 mg/day) because of the potential risk of early miscarriage</td>
<td></td>
</tr>
<tr>
<td>Rw5 For the prophylaxis of migraine in women desiring a pregnancy</td>
<td>Strong</td>
</tr>
<tr>
<td>a. Stop current prophylactic medication whenever possible</td>
<td></td>
</tr>
<tr>
<td>b. Contraindicate sodium valproate, topiramate, candesartan, lisinopril, and CGRP-MABs</td>
<td></td>
</tr>
<tr>
<td>c. When prophylaxis is necessary, propose a non-pharmacological approach (lifestyle changes, exercise, neuromodulation, acupuncture) and/or prescribe amitriptyline, propranolol or metoprolol</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Recommendations for management of migraine during pregnancy</th>
<th>Strength of recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rw6 Plan regular follow-up visits during pregnancy when remission of bothersome attacks was not achieved during the first trimester</td>
<td>Strong</td>
</tr>
<tr>
<td>Rw7 For acute treatment of migraine during pregnancy</td>
<td>Strong</td>
</tr>
<tr>
<td>a. Prescribe paracetamol for mild attacks</td>
<td></td>
</tr>
<tr>
<td>b. Prescribe a triptan for moderate or severe attacks, and after failure of paracetamol. Favor sumatriptan and use rizatriptan or zolmitriptan after failure of sumatriptan</td>
<td></td>
</tr>
<tr>
<td>c. Contraindicate NSAIDs and aspirin (> 500 mg/day) after 24 weeks of pregnancy, and limit their use before 24 weeks</td>
<td></td>
</tr>
<tr>
<td>Rw8 Regarding migraine prophylaxis during pregnancy</td>
<td>Strong</td>
</tr>
<tr>
<td>a. Encourage lifestyle changes and adapted exercise to each woman</td>
<td></td>
</tr>
<tr>
<td>b. Propose neuromodulation and acupuncture to women asking for a non-pharmacological approach</td>
<td></td>
</tr>
<tr>
<td>c. When pharmacological prophylaxis is necessary, prescribe propranolol, metoprolol or amitriptyline (propranolol and amitriptyline can be used during breastfeeding)</td>
<td></td>
</tr>
<tr>
<td>Rw9 In case of bothersome migraine during pregnancy, the patient should be managed both by a neurologist and a gynecologist</td>
<td>Strong</td>
</tr>
</tbody>
</table>

NSAIDs: nonsteroidal anti-inflammatory drugs; CGRP-MABs: calcitonin-gene-related peptide-receptor monoclonal antibodies.
5.2.2. What are the effective treatments for menstrual migraine?
Triptans, NSAIDs, paracetamol, and the combination of aspirin with caffeine are effective acute treatments for menstrual migraine (level of evidence high) [112,114]. Women with frequent migraine including menstrual attacks are eligible for standard prophylactic medications. In women with a regular hormonal cycle, some studies have shown that menstrual attacks may be prevented by short-term perimenstrual (sequential) prophylaxis. Naproxen is effective (level of evidence fair) [115] and its use may be relevant in case of associated dysmenorrhea [116]. Three triptans were shown to be effective (frovatriptan and naratriptan 2.5 mg twice daily, zolmitriptan 2.5 mg three times daily) (level of evidence high) [117], but they were used at high daily doses and this strategy should be balanced with the limit of eight monthly days of intake in order to prevent triptan overuse. Cutaneous estradiol (1.5 mg/day for 7 days) is effective (level of evidence fair) [118], but its use may delay the attack some days later, following hormonal withdrawal (level of evidence fair) [116,118,119]. Overall, we do not recommend these short-term perimenstrual prophylactic strategies (strength of recommendation: strong against).

In eligible women, hormonal contraception can be used with the purpose of preventing menstrual migraine, either with an extended-cycle regimen and a shortened hormone-free interval, or with a continuous regimen (level of evidence fair) [118]. In patients with migraine with aura, combined hormonal contraception (CHC) is contraindicated because of the increased risk of stroke, and progestosterone-only contraceptives can be used (see below).

5.2.3. Recommendations for management of menstrual migraine
The recommendations are summarized in the Table 8.

5.3. Migraine, contraception and hormonal replacement therapy

5.3.1. Does contraception aggravate migraine?
There is no data on the risk of migraine for non-oral contraception and for oral combined hormonal contraception (CHC) containing estradiol. No study is available about the impact of the levonorgestrel intrauterine device on migraine.

5.3.2. Is there a vascular risk of contraception in migraine?
The risk of ischemic stroke is significantly increased in migraine with aura. CHC significantly increases the risk of stroke in women with migraine with aura (level of evidence high) [120,121]. In addition, arterial risk factors (age > 35, smoking, familial history of stroke or myocardial infarction, arterial hypertension, dyslipidemia, diabetes, obesity) are synergic with migraine (level of evidence high) (Box 2). Progestative contraception is not associated with an increased risk of ischemic stroke (level of evidence medium) [119]. Levonorgestrel intrauterine device is not contraindicated in migraine with aura (level of evidence high).

5.3.3. What is the impact of menopause and hormonal replacement therapy (HRT) on migraine?
While menopause, especially natural menopause, is frequently associated with an improvement of migraine, perimenopause is often associated with more frequent migraine attacks [122]. The impact of hormone replacement therapy on migraine course is debated [116,119].

<table>
<thead>
<tr>
<th>Recommended for diagnosis and treatment of menstrual migraine</th>
<th>Strength of the recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rw10 Diagnose menstrual migraine according to ICHD-3 criteria, with the use a prospective headache diary over three months</td>
<td>Strong</td>
</tr>
<tr>
<td>Rw11 Treat menstrual attacks following recommendations for any acute attack, i.e. with an NSAID and/or a triptan</td>
<td>Strong</td>
</tr>
<tr>
<td>Rw12 In women with bothersome menstrual migraine who are already under hormonal contraception, propose a continuous intake of the contraception or a shortened hormone-free interval</td>
<td>Strong</td>
</tr>
<tr>
<td>Rw13 Women with bothersome menstrual migraine, the treatment and especially hormonal interventions should be decided by the primary care physician and a gynecologist</td>
<td>Strong</td>
</tr>
</tbody>
</table>

Box 2. Type of contraception recommended according to the arterial risk factors and type of migraine.

First step: check for arterial risk factors before prescriptions of hormonal contraception
- Age > 35
- Smoking, familial history of stroke or myocardial infarction
- Arterial hypertension
- Dyslipidemia
- Diabetes
- Obesity

Second step: choose contraception according to the arterial risk factors and type of migraine
- Migraine without aura
 - Absence of any arterial risk factor: every hormonal contraception can be used
 - ≥ 1 risk factor: oral combined contraception is contraindicated; progestin-only contraception is possible
- Migraine with aura
 - Oral combined contraception is contraindicated; progestin-only contraception is possible
5.3.4. **Recommendations for contraception and hormonal replacement therapy in women with migraine**

The recommendations are summarized in the Table 9.

<table>
<thead>
<tr>
<th>Recommendations for contraception in women with migraine</th>
<th>Level of evidence</th>
<th>Strength of the recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rw14 Before prescribing any hormonal contraception, always screen for migraine, with and without aura, in addition to other arterial risk factors</td>
<td>High</td>
<td>Strong</td>
</tr>
</tbody>
</table>
| Rw15 In women with migraine without aura
 a. CHC can be prescribed in the absence of any other arterial risk factor
 b. When any arterial risk factor is present, contraindicate CHC and propose progestin-only or non-hormonal contraception | High | Strong |
| Rw16 In women with migraine with aura, contraindicate CHC and propose progestin-only or non-hormonal contraception | High | Strong |

<table>
<thead>
<tr>
<th>Recommendations for HRT prescription in women with migraine</th>
<th>Level of evidence</th>
<th>Strength of the recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rw17 Before any HRT prescription, always screen for migraine with and without aura in addition to other arterial risk factors</td>
<td>High</td>
<td>Strong</td>
</tr>
<tr>
<td>Rw18 HRT is not contraindicated in migraine without other vascular risk factors</td>
<td>Medium</td>
<td>Strong</td>
</tr>
</tbody>
</table>

HRT: hormonal replacement therapy; CHC: combined hormonal contraception.

Disclosure of interest

ADU has received honoraria for consultations or speaker panel from Abbvie, Amgen, Eli Lilly, Lundbeck, Novartis and TEVA. SdG received honoraria from Abbvie/Allergan, Boehringer, Lilly, Novartis, Teva. CR received consultant or speaker fees from Allergan/AbbVie, Homeperf, Lilly, Lundbeck, Novartis et Teva. ADO received honoraria from Allergan, Amgen, Lilly, Lundbeck, Novartis, TEVA. PG has received honoraria for consultancies or speaker panel from Abbvie, Lilly, Lundbeck, Novartis, TEVA, Allergan, Biogen Idec, Sanofi, Merck-Serono, Roche. EGM received honoraria Allergan, Bayer, EMS, Boehringer, Lilly, Lundbeck, Medtronic, Novartis, Pfizer TEVA. MLM has received financial support to the institution (département d’évaluation et traitement de la douleur du CHU de Nice and/or le FHU InovPain) and honoraria from Allergan, Amgen, Boston Scientific, Grunenthal, Lilly, Lundbeck, Medtronic, Novartis, Pfizer, ReckittBenckiser, Saint-Jude, Sanofi-Aventis, Teva, UPSA, Zambon. CL has received honoraria from Amgen, Grunenthal, Homeperf, Lilly, Lundbeck, Novartis, SOS Oxygène, Homperf and Elsevier. XM has received financial support from Allergan, Biogen, Bristol Myers Squibb, Grünenthal, Lilly, Teva, Merck-Serono, Novartis, Roche, and Sanofi-Genzyme and non-financial support from SOS Oxygène, not related to the submitted work. DV declare that he has no competing interest. GD has received honoraria for consultancies or speaker panel from Abbvie/Allergan, Amgen, Eli Lilly, Lundbeck, Novartis and TEVA.

Acknowledgements

The authors thank the following for their contributions to the writing group members: Colette Aguere (psychologist), Isabelle Berger (neurologist), Virginie Corand (neurologist), Christelle Creac’h (neurologist), Denys Fontaine (neurosurgeon), Lou Grangeon (neurologist), Franck Henry (psychologist), Justine Hugon-Rondin (gynecologist), Guillaume Levavasseur (sport medicine, osteopathy), Lorraine Maitrot-Mantelet (gynecologist), Marc Martin (general practitioner, acupuncturist), Geneviève Plu-Bureau (gynecologist), Sylvain Redon (neurologist), Françoise Radat (psychiatrist), Jean Schoenen (neurologist).

The authors thank the following for their contributions to the reading group members: Hail Alchaar (neurologist), Michèle Barege (neurologist), Blandine Bertin (pharmacist, pharmacovigilance), Pauline Boulan (neurologist), Alexandre Cauchie (general practitioner, pain physician), Judith Cottin (pharmacist, pharmacovigilance), Gwladys Fontaine (general practitioner pain physician), Johann Guillot (general practitioner, pain physician), Cédric Gollion (neurologist), Gérard Micck (neurologist, pain physician), Bénédicte Noelle (neurologist), Sabine Simonin (anesthesiologist, pain physician), Jacques Gaillard (pain physician), Johann Guillot (general practitioner, pain physician), Jean-Louis Lajoie (general practitioner, pain physician), Jerome Massardier (gynecologist), Mirela Muresan (neurologist), Mitra Najjar (neurologist), Anne Revol (neurologist), Roland Feyron (neurologist), Sophie Foulpin (pain physician, rheumatologist), Loïc Rambaud (neurologist, pain physician), Vincent Soriot (pain physician), Valerie Wolff (neurologist).
The authors also thank Mr. Quentin Peccoux and Mrs. Sabine Debremenaer.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.neuro.2021.07.006.

References

International meeting of the French society of neurology 2021

Revised guidelines of the French headache society for the diagnosis and management of migraine in adults. Part 3: Non-pharmacological treatment

a Inserm U1028, CNRS UMR5292, Neuroscience Research Center (CRNL), Neurological hospital, Lyon, France
b Department of Neurology, Emergency Headache Center (Centre d’urgences céphalées), Lariboisière Hospital, AP–HP, Paris, France
c Department of Neurology, Rouen University Hospital, Rouen, France
d Department of Neurology, Laennec Hospital, CHU de Nantes, Nantes, France
e FHU INOVPAIN, centre d’évaluation et de traitement de la douleur, hôpital de La Timone, Marseille, France
f Department of Neurology, Annecy-Genevois Hospital, Annecy, France
g Pain Department and FHU InovPain, CHU de Nice, Côte Azur Université, Nice, France
h Service de neurochirurgie, centre d’évaluation et de traitement de la douleur, CHRU de Lille, hôpital Salengro, Lille, France
i Inserm, Neuro-Dol, Université Clermont Auvergne, CHU de Clermont-Ferrand, Clermont-Ferrand, France
j Department of Neurosurgery, Hôpital Pitié-Sapèrière, Paris, France
k Department of Neurology, Gui-de-Chauliac Hospital, CHU de Montpellier, University of Montpellier, 34000 Montpellier, France

INFO ARTICLE

Article history:
Received 8 July 2021
Accepted 9 July 2021
Available online xxx

Keywords:
Migraine
Guidelines
Non-pharmacological treatment
Physical exercise
Dietary supplements
Neuromodulation therapies
Acupuncture

ABSTRACT

The French Headache Society proposes updated French guidelines for the management of migraine. This article presents the third part of the guidelines, which is focused on the non-pharmacological treatment of migraine, including physical exercise, dietary supplements and plants, diets, neuromodulation therapies, acupuncture, behavioral interventions and mindfulness therapy, patent foramen ovale closure and surgical nerve decompression.

© 2021 Published by Elsevier Masson SAS.

* Corresponding author.
E-mail address: genevieve.demarquay@chu-lyon.fr (G. Demarquay).
https://doi.org/10.1016/j.neurol.2021.07.009
0035-3787/© 2021 Published by Elsevier Masson SAS.

1. Introduction

Migraine is the second most common neurological disease after tension type headache, but many affected patients remain undiagnosed and undertreated. Besides medications, non-pharmacological approaches can be proposed both for the acute and prophylactic treatment of migraine. Non-pharmacological approaches include heterogeneous techniques with various qualities of evidence.

The French Headache Society has prepared revised guidelines to provide healthcare professionals with practical and up-to-date recommendations to optimize diagnosis and treatment of migraine, with the aim of improving the quality of life of affected patients and their relatives. The guidelines have been divided into three parts. The first part presents guidelines about the diagnosis and assessment of migraine [1]. The second part proposes guidelines for the pharmacological treatment of migraine [2]. The third part, presented herein, is focused on the non-pharmacological treatment of migraine, including physical exercise, dietary supplements and plants, diets, neuromodulation therapies, acupuncture, behavioral interventions and mindfulness therapy, patent foramen ovale closure and surgical nerve decompression.

2. Methods

Methods are described in the first part of the updated guidelines [1] (Online material).

3. Is physical exercise effective for migraine prophylaxis?

Recent systematic reviews and meta-analyses provide moderate-quality evidence that aerobic exercise therapy can decrease the number of migraine days in patients with migraine (level of evidence medium) [3–5]. Although the type of physical activities varied according to the studies, multi-weekly aerobic exercise (endurance) has a clear benefit [3,4,6]. Exercise therapy can be efficient when used as the sole preventative option and might also potentiate pharmacological prophylaxis [7,8].

The benefit of yoga for migraine prevention remains uncertain: a recent meta-analysis including six low-quality randomized-controlled trials (RCT) in migraine and tension-type headache patients revealed a global benefit but which related to tension-type headache [9]. However, a more recent, not included, large RCT showed a benefit of yoga as add-on therapy for migraine prevention, with positive outcomes on headache days, disability and quality of life [10]. Up to now, evidence remains too scarce to make any recommendation for this activity.

4. What is the evidence concerning dietary supplements and plants?

Studies show that co-enzyme Q10 supplementation (mostly 300 mg/day) (level of evidence fair) [11,12], high-dose riboflavin (vitamin B2, 400 mg/day) (level of evidence fair) [13–15], oral magnesium (600 mg/day) (level of evidence fair) [16,17], and oral melatonin (mostly immediate-release 3 mg) (level of evidence fair) [18] may be of potential benefit for migraine prophylaxis. Some data suggest that feverfew may have a small positive effect on migraine prophylaxis, but other studies are negative (level of evidence for efficacy unknown) [19]. Studies show that butterbur is effective in the prophylaxis of migraine (level of evidence moderate) [20,21] but preparations are heterogeneous with a risk of hepatotoxicity in those containing pyrrolizidine alkaloids.

5. What is the evidence concerning diets?

Specific diets (gluten-free, lactose free…) should not be recommended as data are too scarce to make any recommendation for a specific diet for migraineurs [22]. Further studies are needed to confirm the encouraging results of ketogenic diets in overweight migraine patients [22,23].

6. What neuromodulation therapies are effective in migraine?

Neuromodulation therapies were evaluated in a 2020 systematic review and meta-analysis [24] (Table 1). For the acute treatment of migraine, the number of well-conducted studies is limited. Conditioned pain modulation by non-painful remote electrical neuromodulation (REN) is effective (level of evidence medium). This neuromodulation technique relates on the principle that pain inhibits pain. Single pulse transcranial magnetic stimulation (TMS), with a portable self-administered device, is effective for migraine with aura [25] (level of evidence fair). One open-label study suggested that it might be of interest even in migraine without aura [26]. Supra-orbital transcutaneous electrical nerve stimulation (TENS) is possibly effective (level of evidence fair) [27,28]. Non-invasive vagus nerve stimulation (VNS) is ineffective [29] (level of evidence fair for inefficacy).

Concerning migraine prevention, everyday self-administered supra-orbital TENS is effective (level of evidence medium) [30–32]. Data concerning occipital TENS are inconclusive [33,34]. High frequency repetitive TMS on the primary motor cortex (M1) is effective (level of evidence fair) [35–37]. Percutaneous electrical nerve stimulation (PENS) or electroacupuncture is possibly effective [38–40] (level of evidence fair). Data concerning transcranial direct current stimulation (tDCS) are heterogeneous and inconclusive overall [24]. Self-administered non-invasive percutaneous VNS is ineffective [41–44] (medium level of evidence for inefficacy). Invasive occipital nerve stimulation is probably effective for chronic migraine prevention [45–47] (level of evidence medium), but no implantable device is currently FDA approved or CE marked in this indication.

7. What is the efficacy of acupuncture for migraine prophylaxis?

Acupuncture can be effective over sham in the short-term prophylaxis of episodic migraine (level of evidence medium),
and has similar efficacy and fewer side effects than many of the standard pharmaceutical agents [48–50]. Long-term studies of acupuncture in episodic migraine, and studies in chronic migraine are lacking.

8. What is the efficacy of behavioral interventions and mindfulness therapy for migraine prophylaxis?

Studies evaluating behavioral therapies and mindfulness meditation are highly heterogeneous regarding settings (size, comparator arms, and endpoints), risk of bias and results. One major limitation relates to the endpoint used for prophylactic treatment: some studies have negative results on headache days, but the awaited effect of these techniques is more related to improvement of disability, quality of life and ability to function with migraine than on the classical headache day reduction endpoint [51].

Behavioral therapies include relaxation, biofeedback and cognitive behavioral therapy. Depending on endpoints, inclusion criteria and analyses, divergent results have been reported in meta-analyses. A meta-analysis concluded that most of the 21 studies conducted up to 2018 to assess the efficacy of behavioral or cognitive-behavioral therapies such as coping strategies, biofeedback, relaxation, and eye movement sensitization for migraine prophylaxis are of very low quality [52]. This Cochrane meta-analysis concluded that there is an absence of high-quality evidence to determine whether psychological interventions are effective for migraine prophylaxis in adults and that it remains uncertain whether there is any difference between psychological therapies and controls on the reduction of migraine days. Another meta-analysis, including all types of headache disorders, concluded that psychological treatments were promising to reduce headache frequency even though the diversity of treatment modalities and the heterogeneity of protocols limited interpretation of data [53]. A previous review focused on cognitive behavioral therapy acknowledged the methodology inadequacy but suggested a potential benefit [54]. Behavioral therapy can be used as add-on to classical pharmacological treatment [55].

Wide heterogeneity also exists regarding mindfulness-based stress reduction benefit for migraine prophylaxis. Likewise, meta-analyses showed conflicting results [56,57], but a more recent narrative review [51], and two new large randomized studies [58,59] suggest that mindfulness-based stress reduction may have beneficial effects, not always on headache days but on disability and quality of life.

Because of their safety and acceptability, behavioral therapies and mindfulness-based stress reduction should be considered in patients with episodic or chronic migraine with significant stress, anxiety or migraine induced-disability, as add-on therapy to pharmacological treatments (level of evidence fair).

The evidence regarding the efficacy of hypnosis is too scarce to make any recommendation [60–62].

Table 1 – Neuromodulation devices with proven efficacy and available in France.

<table>
<thead>
<tr>
<th>Stimulation method Device™</th>
<th>Level of evidence for efficacy</th>
<th>Strength of recommendation by the French Headache Society</th>
<th>Availability</th>
<th>Practical use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote electrical neuromodulation (REN) (Yes)</td>
<td>Medium in acute migraine treatment</td>
<td>Moderate in acute treatment</td>
<td>Available online but not yet in France, price to be determined</td>
<td>Self-administered by the patients on their forearm for migraine attack treatment for 30–45 min, controlled by smartphone app</td>
</tr>
<tr>
<td>Single pulse transcranial magnetic stimulation (Yes)</td>
<td>Fair in acute aura treatment</td>
<td>Moderate in acute aura treatment</td>
<td>Available online but not in France, no data on a French availability or price</td>
<td>Self-administered by the patients with aura attack treatment: single-pulse on the occiput, repeated once 30 sec later, to be performed as soon as possible after the aura starts</td>
</tr>
<tr>
<td>Supra-orbital transcutaneous electrical nerve stimulation (TENS) (Yes)</td>
<td>Fair in acute migraine treatment Medium in migraine prevention</td>
<td>Weak in acute treatment Moderate in migraine prevention</td>
<td>Available online, for devices with acute and prophylactic settings</td>
<td>Self-administered by the patients on his forehead, 20 min every day for preventive treatment, punctual use for 60 min for migraine attack treatment</td>
</tr>
<tr>
<td>High frequency repetitive TMS on the primary motor cortex (Yes)</td>
<td>Fair in migraine prevention</td>
<td>Weak in migraine prevention</td>
<td>Classical rTMS device in the neurologist’s office</td>
<td>Up to 3 sessions/week performed by a neurologist on the primary motor cortex for up to 4 consecutive weeks. ≥ 600 pulses per session, 10 Hz, 70 to 80% of the resting motor threshold. Further studies are needed to specify conditions and settings, especially to define sessions’ rate for long-term use This technique should be restricted to tertiary centers until further studies are available (expert opinion)</td>
</tr>
</tbody>
</table>

TMS: transcranial magnetic stimulation.
9. **What is the efficacy of patent foramen ovale closure?**

Patent foramen ovale (PFO) is more frequent in migraineurs than in non-migraineurs but randomized controlled trials on PFO closure in migraine failed to demonstrate a significant benefit of PFO closure on the primary endpoints [63–66]. To date, screening for a PFO and PFO closure is not recommended for migraine prophylaxis (level of evidence strong).

10. **What is the efficacy of surgical nerve decompression?**

Data supporting surgical nerve decompression are very scarce and mostly based on retrospective and unblinded studies [67,68]. Up to now, we do not recommend such procedures.

11. **Recommendations for non-pharmacological treatment of migraine**

The recommendations are summarized in the Table 2.

Table 2 - Recommendations for non-pharmacological treatment of migraine.

<table>
<thead>
<tr>
<th>Rnpt1</th>
<th>For non-pharmacological treatment of migraine, our recommendations are</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>Encourage any patient with migraine to practice weekly aerobic exercise as an alternative or a supplement to pharmacological prophylaxis</td>
</tr>
<tr>
<td>Moderate</td>
<td>In patients with episodic migraine asking for a prophylactic treatment with limited side-effects, propose co-enzyme Q10, high-dose riboflavin or melatonin</td>
</tr>
<tr>
<td>Strong</td>
<td>Do not prescribe plants for the prophylaxis of migraine because feverfew has no demonstrated efficacy and butterbur has a heterogeneous composition carrying a risk of hepatotoxicity</td>
</tr>
<tr>
<td>Strong</td>
<td>In patients with episodic migraine asking for non-pharmacological treatments or achieving insufficient efficacy with pharmacological treatments, propose neuromodulation therapies, favoring remote electrical neuromodulation for the acute migraine treatment and supra-orbital transcutaneous electrical nerve stimulation for migraine prevention</td>
</tr>
<tr>
<td>Strong</td>
<td>In patients with episodic migraine asking for non-pharmacological treatments or achieving insufficient efficacy with pharmacological treatments, propose acupuncture as an alternative or a supplement to pharmacological prophylaxis</td>
</tr>
<tr>
<td>Strong</td>
<td>In patients with episodic or chronic migraine with significant stress, anxiety, or migraine-induced disability, propose behavioral therapies (relaxation, biofeedback and cognitive behavioral therapies) or mindfulness-based stress reduction as add-on therapy to pharmacological treatments</td>
</tr>
<tr>
<td>Strong</td>
<td>Do not recommend PFO closure for migraine prophylaxis</td>
</tr>
</tbody>
</table>

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Disclosure of interest

GD has received honoraria for consultancies or speaker panel from Abbvie/Allergan, Amgen, Eli Lilly, Lundbeck, Novartis and TEVA. JM has received consultant or speaker fees from Lilly, Teva and Novartis and financial support for congress from Amgen, Novartis, SOS Oxygene, Homperf and Elsevier. EGM received honoraria Allergan, Bayer, BMS, Boehringer, Lilly, Lundbeck, Medtronic, Novartis, Pfizer TEVA. SDG received honoraria from Abbvie/Allergan, Boehringer, Lilly, Novartis, Teva. ADO received honoraria from Allergan, Amgen, Lilly, Lundbeck, Novartis, TEVA. PG has received honoraria for consultations or speaker panel from Abbvie, Lilly, Lundbeck, Novartis, TEVA, Allergan, Biogen Idec, Sanoﬁ, Merck Serono, Roche. MLM has received financial support to the institution (Département d’évaluation et traitement de la douleur du CHU de Nice and/or le FHI InovPain) and honoraria from Allergan, Amgen, Boston Scientific, Grunenthal, Lilly, Lundbeck, Medtronic, Novartis, Pfizer, ReckittBenckiser, Saint-Jude, Sanoﬁ-Aventis, Teva, UPSA, Zambon. CL has received honoraria from Amgen, Grunenthal, Homeperf, Lilly, Lundbeck, Novartis, SOS oxygène, TEVA. XM has received financial support from Allergan, Biogen, Bristol Myers Squibb, Grünenthal, Lilly, Teva, Merck-Serono, Novartis, Roche, and Sanoﬁ-Genzyme and non-financial support from SOS Oxygène, not related to the submitted work. CR received consultant or speaker fees from Allergan/Abbvie, Homeperf, Lilly, Lundbeck, Novartis et Teva. ADU has received honoraria for consultancies or speaker panel from Abbvie, Amgen, Eli Lilly, Lundbeck, Novartis and TEVA.

The author DV declares that he has no competing interest.

Acknowledgements

The authors thank the following for their contributions to the writing group members: Colette Aguerre (psychologist), Isabelle Berger (neurologist), Virginie Corand (neurologist), Christelle Creac’h (neurologist), Denys Fontaine (neurosurgeon), Lou Grangeon (neurologist), Franck Henry (psychologist), Justine Hugon-Rondin (gynecologist), Guillaume Levavasseur (sport medicine, osteopathy), Lorraine Maitrot-Mantelet (gynecologist), Marc Martin (general practitioner, acupuncturist), Geneviève Plu-Bureau (gynecologist), Sylvain Redon (neurologist), Françoise Radat (psychiatrist), Jean Schoenen (neurologist).
The authors thank the following for their contributions to the reading group members: Haisel Alchaar (neurologist), Michèle Barege (neurologist), Blandine Bertin (pharmacist, pharmaco-vigilance), Pauline Boulan (neurologist), Alexandre Cauchie (general practitioner, pain physician), Judith Cottin (pharmacist, pharmaco-vigilance), Gladys Fontaine (general practitioner pain physician), Johann Guillet (general practitioner, pain physician), Cédric Gollion (neurologist), Gérard Mick (neurologist, pain physician), Bénédicte Noelie (neurologist), Sabine Simonin (anesthesiologist, pain physician), Jacques Gaillard (pain physician), Johann Guillet (general practitioner, pain physician), Jean-Louis Lajoie (general practitioner, pain physician), Jerome Massardier (gynecologist), Mirela Muresan (neurologist), Mitra Najjar (neurologist), Anne Revol (neurologist), Roland Peyron (neurologist), Sophie Pouplin (pain physician, rheumatologist), Loic Rambaud (neurologist, pain physician), Vincent Soriot (pain physician), Valerie Wolff (neurologist).

The authors also thank Mr Quentin Peccoux and Mrs Sabine Debremaeker.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.neuro.2021.07.009.

REFERENCES

